Vula: automatic local area network encryption

Abstract—This paper introduces Vula, a protocol and suite of
Free Software tools for automatically protecting network traffic
between hosts in the same Local Area Network (LAN). Without
any configuration, or any user awareness, Vula automatically
blinds passive adversaries. With user awareness and a small
amount of interaction, it also protects connections using .local
hostnames, or any other user supplied domain, against active
adversaries. The protocol additionally provides protection against
a passive adversary who is recording traffic today and who
may have a quantum computer tomorrow. Vula’s protections
persist with network topology changes which occur naturally
over time, allowing users to maintain cryptographic assurances
while roaming between different LANs. The software operates
without requiring centralized administration, specialized network
equipment, or significant performance penalties.

I. INTRODUCTION

Mass surveillance [72], [29], [32], [30], [33], [31], [34],
[35] is not only a concern for backbone [75] networks; every
network [88] is potentially a target. Local Area Network
(LAN) security in the form of protection against surveillance
is generally lacking in home, small business, and enterprise
networks. We propose Vula: a protocol for automatically
securing the LAN against eavesdropping and traffic tampering
by other users, and/or network infrastructure equipment. Vula
combines a secure tunneling protocol for secure point-to-
point communications between Vula peers, multicast DNS for
publishing and discovery of Vula peer associated metadata,
along with easy Vula peer verification. Vula automatically
builds tunnels directly between participating Vula peers on the
same local network segment. We have selected the WireGuard
Virtual Private Network (VPN) protocol outlined in Section IV
for our Vula tunneling protocol. Unlike most deployments of
WireGuard, Vula does not require the use of a third party
located on another network. Users may additionally discover
and/or verify Vula peers using user-friendly QR codes [52] for
protection against active adversaries.

In addition to WPA [78], [93] encrypted home networks,
open public WiFi hotspots, and business networks, we de-
signed Vula with Ethernet networks such as Internet Exchange
Points (IXP) [97] in mind which are known targets [71] of
mass surveillance '. This is not the main target of Vula or
this paper, but Figure 2 and additionally Figure 4 produced
by the FLENT [47], [36] tool in the Appendix show that
WireGuard performance keeps up with Gigabit line speed. We
note that users of any wireless or Ethernet network will benefit

I'Two examples in the IXP community are London’s LINX [15] and
Frankfurt’s DE-CIX [64] [58]. LINX denies that they are under such an order
and they promise to reveal it if they learn about it [15] while DE-CIX has been
to court to fight against such an order. In the IXP community, it is commonly
understood in private discussions that both are under secret orders to export
large volumes of traffic that their IXP carries to their local mass surveillance
adversary, GCHQ and BND respectively.

from the use of Vula 2. With Vula’s ability to be gradually
deployed, every host has a notion of cryptographic identity,
and we think that with this improvement it will be clearer how
to solve the problem of Internet-wide end-to-end encryption
without resorting to sending unecrypted IP packets, encrypted
but unauthenticated IP packets, or any of the various Single
Points of Failure (SPOFs) as described in Section II.

A. Motivation

Public and private personal networks are commonly de-
ployed using wired Ethernet (802.3) or wireless LAN (802.11)
standards without comprehensive protection against surveil-
lance adversaries. Ethernet networks are commonly deployed
in consumer and commercial contexts without encryption of
any kind. Authentication [2] of end-user’s computers may be
combined with a protocol such as MACsec [50] or WPA for
link encryption between an end-user’s computer and their im-
mediate upstream Ethernet or wireless link. This combination
of end-user authentication and link encryption does not provide
end-to-end encryption [24] between hosts on the same Ethernet
segment or the same IP multicast broadcast domain. It addi-
tionally adds a per-user administrative overhead, necessitating
network equipment-specific administration which must further
be specialized to support the required protocols. This may
also create additional logging and other user data management
complexity. Logs often present themselves as a tempting target
for attacks. [84].

B. The Vula Proposal

We propose a system which provides automatic end-to-
end encryption of IP packets with transitionally [85] post-
quantum [70] forward-secrecy [65], without requiring central-
ized administration or specialized equipment beyond a basic
Ethernet hub, switch, and/or wireless LAN. We also experi-
ment with other Ethernet devices such as Thunderbolt [62],
[82].

The purpose of Vula is to enhance the security of LAN
traffic between hosts on the same IP multicast broadcast
domain. We have taken great care to avoid introducing new
vectors for host compromise in the design and implementation
of Vula. Overall, Vula reduces the attack capabilities of vari-
ous adversaries by following the principle of least authority
(POLA [66]). We use but we do not completely trust the
local network infrastructure. For systems participating in the
Vula protocol, we reduce nearly all attack vectors to a denial-
of-service that maintains confidentiality for traffic of Vula
peers, also known as participants, using the protocol, while

2 Any point-to-point traffic between participating systems will be protected
by WireGuard, and the protection for point-to-point traffic is much stronger
than the protection afforded by an unencrypted wireless network. It is also
stronger in some ways than the protections afforded by WPA or WPA2 such
as forward-secrecy.

maintaining backwards compatibility, and connectivity with
non-participants. Traffic exchanged with non-participants of
the Vula protocol remains unchanged, and may be optionally
blocked, if desired. Vula provides a number of properties:

0) No infrastructure required.

1) Functional across organizational boundaries.

2) Fully automatic: LAN traffic between hosts with Vula in-
stalled is protected without any configuration whatsoever.

3) Works on temporarily offline or airgapped networks (e.g.:
link-local [19] addressing on Ethernet, ad-hoc WiFi,
Thunderbolt, etc).

4) Protects traffic using existing IP addresses (whether
DHCP-assigned, link-local, or manually configured), so
applications do not need to be reconfigured.

5) Protects entire IP packets regardless of sub-protocol (e.g.:
UDP, TCP, ICMP).

6) Transitional post-quantum protection.

We consider previous and related work in Section II.
We specify our threat model in Section III in terms of two
broad categories of network adversary capabilities: passive
adversaries [69], which are those who can observe some
or all of the network’s traffic but who lack the ability or
opportunity to inject packets into the network or to prevent
packets from being delivered, and active adversaries [25], [92]
who do not lack those abilities. We present Vula in Section IV,
our performance measurements in Section V, our security
evaluation in Section VI, conclusions in Section VII, and we
also present additional related information in Appendix A.

II. PRIOR AND RELATED WORK

Previous attempts to provide security for wired and wire-
less networks are myriad but in practice have largely failed
to protect end-users from commonly understood surveillance
adversaries such as corporate or government surveillance pro-
grams.

The general state of affairs for consumer or small business
connections provided by internet service providers is to require
a modem of some kind. This modem usually acts as a media
converter; examples such as DOCSIS [79] or VDSL2 [28]
convert their respective uplink technology into an Ethernet
network or a wireless network, or both. The modem device
generally either acts as an IP router, or as a router with network
address translation (NAT), often with basic packet filtering
capabilities. Often these modems provide both Ethernet and
wireless LAN capabilities which are commonly configured as a
single bridged network with a single multicast domain. The se-
curity of such networks from the perspective of a surveillance
adversary often hinges on the strength of a wireless passphrase,
with no protection of the Ethernet side beyond physical access
restrictions. Worse, even with a strong passphrase, the ability
to trivially predict factory-initialized or even user-chosen long
term cryptographic keys from wireless routers has been avail-
able to unskilled adversaries for years [40], [61], [94]. For
any given consumer wireless network deployment, one out of
dozens of public attacks may be practically feasible without
extensive knowledge requirements.

Previous attempts to create automatic or opportunistic [59]
end-to-end encryption with IPSec [38] have generally foregone
authentication, and attempt to solve a similar set of problems at

internet scale by simply attempting to build IPSec connections
to every host or network block. Alternative authentication
using DNS is also possible for highly technical users who
have end to end reachability such as a routable IPv4 or IPv6
network address, and who are able to control their forward
and reverse DNS. This is not a common situation for many
internet users who sit behind a carrier-grade NAT, or where
their traffic is filtered to prevent running of services without
permission from their ISP.

Our proposed protocol attempts to solve a similar and
the related set of problems at a smaller scale without any
trusted third parties, and without attempting to create trust
relationships between people who are unable to meet and
verify cryptographic keys.

A. Related protocols: 802.1x and MACsec

Protocols primarily deployed in corporate and academic
environments center around access-control in an attempt to
address some security concerns posed by adversaries with or
without permitted access to the LAN.

These networks generally provide authentication, autho-
rization, and accounting (AAA) services. A popular example
in academic environments is the Eduroam [99] network which
uses WPA2-Enterprise. In passive adversary models, Eduroam
protects against a local surveillance adversary by shifting the
risk of the user’s authentication traffic with EAP [95] to their
home academic institution. In active adversary models with
Eduroam, client software may or may not [99, Section 7] be
configured correctly to provide active adversary protection.

Wireless networks with AAA services as part of wireless
WPA2-Enterprise or Ethernet networks protected by 802.1x
are often used without any additional security measures against
potential surveillance adversaries after authentication. Ethernet
networks may also be deployed with MACsec [50] in an at-
tempt to thwart adversary access to the network infrastructure,
not as a matter of protecting against surveillance adversaries.
MACsec provides link security in the form of encryption,
integrity, and authenticity between a given client’s Ethernet
interface and the immediate upstream switch. This scenario
does not provide end-to-end security when used for access
control.

While GNU/Linux and some other operating systems do
support MACsec and 802.1x, it is uncommon for consumer-
grade switching equipment to support it and when enterprise
switching equipment offers support it typically requires a
paid license; these issues hinder general adoption. It may
also be subject to export control, especially when specialized
hardware is required for a given platform deployment of
MACsec. MACSec is typically not end-to-end encrypted but
host to switch-port, traffic after the entry-switch is completely
unprotected.

Switching infrastructure with MACsec generally has access
to encrypted and unencrypted Ethernet frames while a passive
surveillance adversary is generally only able to intercept Eth-
ernet frames through Ethernet cable tapping or by monitoring
radio emissions for a related wireless network. An active
adversary may compromise the wireless drivers of a client [9],
an access point, switch, and/or router to gain access to key

material. In the general case, end-to-end encryption is a much
stronger and much more desirable protection than the partial
protection offered by 802.1x networks even when deployed in
tandem with MACsec.

Post-Quantum MACsec Key Agreement for Ethernet Net-
works [22] suffers from the same problems as MACsec in that
it is not an end-to-end protocol, it is layer-two, and at this time
it is an experimental protocol which has not been adopted by
any MACsec vendors.

Wireless network security protocols attempt to tackle con-
fidentiality, integrity, and access control in a manner which is
generally not secure against surveillance adversaries as shown
below. We consider the WPA1 and WPA2 personal protocols
which are commonly used as they require no additional authen-
tication servers or configuration beyond setting a passphrase.
Long term monitoring of passphrase authenticated wireless
networks with poor passphrase rotation policies is especially
problematic. Given a password, a passive adversary is able to
recover plaintext for each session for which they have recorded
a successful authentication and association, in addition to
the encrypted traffic that they wish to decrypt. Handshakes
occur frequently, e.g. devices that enter a low power mode
generally re-authenticate after waking from a sleep mode,
so that adversaries arriving too late need not wait long.
Many wireless networks do not support protected management
frames [51] and so adversaries commonly are able to force
a disassociation without knowledge of the passphrase. Users’
software will commonly automatically reconnect after an ad-
versary has forced a disassociation. This extremely common
issue gives an adversary the chance to force and then observe
a fresh handshake and thus mount the above-mentioned attack.
Furthermore, a recording of the handshake permits mounting
offline password-guessing attacks.

With Vula, these attacks are mitigated with regard to
traffic confidentiality concerns. For example, when Vula is
deployed for users on a WiFi network, an attacker breaking the
WPA/WPA-2 access controls and thus joining the network is
restricted to performing only denial-of-service attacks instead
of being able to mount a full on-path active Machine-In-The-
Middle (MITM) attack with access to unencrypted IP packets.

B. Comparison with other projects

There are a wide variety of tools which can be used to
create end-to-end encrypted tunnels between hosts, or which
share other superficial similarities with Vula. To our knowl-
edge, however, none of them achieve Vula’s design goal of
providing fully-automatic end-to-end encryption of local area
network traffic. We present a comparison in Table I.

Projects such as Tailscale [89], Headscale [37], and inner-
net [91] are similar to Vula in that they can be used to encrypt
traffic between hosts on a LAN using WireGuard tunnels,
but they differ in some important respects: They only create
tunnels between hosts that are logged in to the same account
on a centralized coordination server. Tailscale outsources the
operation of this component to Amazon, a surveillance actor.
Headscale and innernet provide free software implementations
which can be self-hosted, but the server remains a single point
of failure. These systems use a different IP range inside and
outside of the tunnels, so LAN-based applications need to be

reconfigured to benefit from it. They do not provide any post-
quantum protection. Furthermore, Tailscale requires internet
access, thus is unsuitable for offline, or airgapped networks.
Tailscale also requires an additional trust relationship with at
least one but likely more 3rd parties: Tailscale and one of
Google, Amazon, Microsoft, or an email provider. Nebula uses
a custom protocol that its authors claim is based on a Noise
Protocol Framework [73] handshake and it has yet to receive
the scruitiny of other instantations such as WireGuard [26].
Nebula, like Tailscale, is used to construct a similar organi-
zational structure VPN mesh. Tailscale, Headscale, innernet,
and Nebula are unsuitable for dynamically discovered peers,
air-gapped network segments, and/or multi-organization pro-
tection, and these properties are not goals of the respective
projects.

With the exception of TCPcrypt and IPsec OE, the other
projects listed in Table I are all designed to protect traffic
between hosts which are configured to be part of a single
organization, whereas Vula provides automatic encryption of
traffic between all locally-reachable hosts that are running the
software. TCPcrypt is an outlier, in that it does provide oppor-
tunistic encryption between hosts without any configuration;
however, it only protects TCP traffic, does not provide secure
names, its key verification system requires application-specific
support, and it appears to be an out-of-tree Linux kernel patch.
These and other deployment impediments have prevented its
adoption even after standardization [14]. For these reasons,
we find TCPcrypt unsuitable for Vula’s needs but we remark
it is still an interesting design with important goals. IPsec
OE is designed to provide opportunistic encryption, but has
numerous [100] shortcomings [41], including vulnerability to
quantum computers, and it has failed to gain adoption, partially
because it requires manual configuration.

C. Star network WireGuard deployments

While WireGuard’s architecture is defined in terms of
peers, deployments often use a hub-and-spoke network topol-
ogy wherein multiple hosts which are commonly referred to
as clients connect to one or more centralized hosts which are
commonly referred to as servers. While this topology can
be used with WireGuard or another VPN in the context of
a local Ethernet segment, it presents a number of downsides
related to the server(s) being SPOFs. Bandwidth SPOF: The
total bandwidth available for clients to communicate with each
other is limited to the bandwidth of the server(s) they are
communicating through. When that bandwidth is exhausted,
performance suffers for all clients. Confidentiality SPOF: Due
to the absence of end-to-end encryption, a central server holds
excess authority allowing it to capture and/or modify traffic
from many clients which are routing through it. Availability
SPOF: The ability of clients to communicate with each other
is entirely dependent upon the availability of their centralized
servers.

D. Point-to-point VPN deployments

It is possible to manually configure WireGuard or another
VPN in a point-to-point topology on a LAN to achieve some
of the same properties that Vula provides. However, there are
some shortcomings to a manual approach which also apply to
the star network topology that Vula addresses.

1
to specific IP addresses
to specific IP addresses
to specific IP addresses

3
Tailscale [89]
Headscale [37]
innernet [91]
Nebula [86]
MACsec [50]
TCPcrypt [14]
IPsec OE [100]
Vula

Ethernet link w/host and switch

TCP traffic w/participating hosts
w/participating hosts (LAN & WAN)
w/participating hosts (LAN) v none

none

WX XXX X%XX%XO

2

X coordination server

X coordination server

X coordination server
to specific IP addresses X certificate authority

v/ RADIUS server

v

v

DNS+DNSSEC and/or CA

4 5 6 17 8

X X J/(client) + X(server) WireGuard

X X v Vv WireGuard

X X v Vv WireGuard

X X v v Custom protocol
X v X /(client) + X(switch) MACsec

X v X Vv TCPCrypt

X i X Vv IPSec cipher-suite
T v /S WireGuard

Table I: Comparison of properties: X: no, v: yes, j: not default, ¥: transitional, 0: zero configuration, 1: encrypts, 2: works offline, 3:
required infrastructure, 4: post-quantum, 5: protects traffic using existing IPs, 6: secure hostnames, 7: free software, 8: encrypted transport.

For example, Vula automatically securely computes and
sets the pre-shared key (PSK) value in the WireGuard protocol
for all peers. The use of an additional PSK is to add transi-
tional post-quantum security to the WireGuard protocol, but
normally requires manual configuration. We use CSIDH [16]
as described in Section IV-E to compute shared symmetric
keys between pairs of peers and the result is used as a PSK.
Vula explicitly supports rotation of the CSIDH keypairs on a
regular basis as this rotates the PSK shared between peers.

1) Management: Adding new hosts to a point-to-point
WireGuard overlay network requires configuring each existing
host with the new host’s key and IP address, and config-
uring the new host with all existing hosts’ keys and IPs.
Vula performs this key distribution and routing configuration
automatically. We explain the use of multicast in Section I'V-B.

2) Addressing: In most point-to-point WireGuard configu-
rations, the IP subnet used for VPN traffic is separate from the
one used for other traffic. This means that traffic to and from
typical LAN applications using mDNS [21] hostnames will not
be automatically encrypted without additional configuration of
each application. Vula, in contrast, encrypts all connections
between participating peers while applications continue using
their existing LAN IP addresses and hostnames.

III. THREAT MODEL AND DESIGN CONSIDERATIONS

In the examples below, we require that Vula users have at
least a single IPv4 address, and are connected to an IP network
through an Ethernet switching fabric and/or a wireless LAN.
To optionally protect upstream traffic, we additionally assume
that any hypothetical user is on a LAN which has at least
one [Pv4 gateway with connectivity to the wider internet. We
choose the strongest adversaries to defend against, thus assume
that the adversaries may record all IP packets. This would
happen for unprotected wifi, if an adversary has access to a
switch mirroring port, or if the adversary has any WPA/WPA?2
passphrases.

A. Unilateral Surveillance Adversary

The possibility of Unilateral Surveillance, such as the
wideband monitoring of all wireless networks in an area, is
a well-understood attack vector. With commonly deployed
consumer or so-called prosumer [80] [56] equipment, capture
of association handshakes with a wireless access point will
allow an attacker to guess a passphrase and later decrypt
captured wireless traffic. Interception of wireless networks is
so common that there are cloud-based services [63] as well

as GPU optimized key recovery tools [1] for attacking (WPA)
cryptographic handshakes in service of decrypting intercepted
data.

A simple and relatable example is a curious neighbor who
lives in close physical proximity to a wireless network such
that their basic interception equipment is within radio range.
They may passively capture wireless traffic over long periods
of time, decrypt it at a later date, and refrain from joining the
wireless network lest their subterfuge be detected. An example
of a tool that may be used by such a neighbor is the SPARROW
IT as seen in Appendix Figure 9. Their home devices may
otherwise be compromised [7] and used by an adversary.

Another passive example is the NSA program OVER-
HEAD [39] which performs wireless network packet capture
in space using satellites [83]; data from that program may be
fed into systems such as XKeyscore [5].

B. End User

There are a variety of ways that End Users can attack each
other on a Local Area Network, due to the reliance on vulnera-
ble protocols such as the Dynamic Host Configuration Protocol
(DHCP) [27], the Address Resolution Protocol (ARP) [74], and
the Domain Name System (DNS) [67]. By simply sending a
few malicious ARP or DHCP packets, an end user can easily
intercept other users’ traffic on a switched network. Users may
also attempt to use packet-in-packet [43] smuggling to interfere
with other users.

An additional adversary to consider would be an active
adversary using NIGHTSTAND [9] as shown in Appendix
Figure 8 which is an attack suite to compromise authorized
wireless equipment.

C. Network Operator

We presume that the Network Operator is able to enable
port mirroring for an entire switching fabric. This means that
they are able to passively collect every packet sent within the
switching fabric, as well as enabling full packet capture on
an upstream router which sends all user data to and from
the internet. We consider this adversary to be close to the
Dolev-Yao [25] model for an attacker, in that they are able
to arbitrarily disable user access, change passwords, capture
packets, inject packets, delay delivery, and more. Usually this
is only possible in the upstream equipment providing network
access to the internet. They are able to carry out all of the
other attacks enumerated. In an ideal environment, at least

one end user is actually the Network Operator. So while all
powerful, we presume that a user will not attack themselves
but rather consider what is possible if their own equipment is
compromised [44].

D. Vula peer states

We distinguish peers by their verification state and their
pinned state. By default, peers are either unverified and un-
pinned, or unverified and pinned. Unpinned should also be
thought of as replaceable by another Vula peer, and pinned
should be thought of as permanent where no other Vula peer
may conflict with the peer’s claimed resources.

In Vula each user has a cryptographic identity given by
a long-term Ed25519 [11] key. These keys certify all other
cryptographic keys used in the Vula protocol. Verification is
an out-of-band process whereby Vula users compare these
Ed25519 identity keys. The identity keys are the only keys
that do not change while all other cryptographic keys may
be regularly rotated. The Ed25519 public key for signatures
is known as the verification key (vk) and it is used to sign
all Vula descriptors - either broadcast to other peers over the
network or scanned as part of a QR code verification process.
Descriptor smuggling with other protocols is left as an exercise
for advanced users.

In order to also protect against active attackers, continuity
of vk public keys must be enforced with respect to both host-
names and IP addresses. This leads to a security-convenience
trade-off: if continuity of vk public keys is enforced by default
for all peers, naturally-occurring name or IP conflicts will
sometimes lead to an inability to communicate. For this reason,
we introduce a user-controlled boolean state for each peer
called pinned. Continuity of vk public keys is only enforced
for peers in the pinned state. Pinning peers allows users to
have the benefit of protection against active adversaries at the
cost of needing to manually resolve hostname or IP address
conflicts.

Pinning a peer creates a binding from the peer’s long-term
verification key to lists of hostnames and IP addresses which
that peer has been known to use. A single pinned peer may be
associated with any number of hostnames and IP addresses,
while a given hostname or IP address may never be associated
with more than one peer.

A pinned peer is a permanent peer. A pinned peer has a
permanent route and traffic for that peer is always directed
into the local Vula device; pinned peers do not expire. If no
Wireguard session exists between the user and their respective
peer, the traffic is never emitted onto the network as the
device will fail closed (See [77, Section 4.1] for the defnition.).
Pinned peers cause a denial of service with non-participants or
colliding Vula peers by design if other users obtain the same
IP address or use the same host name; this is independent
of those being Vula peers or non-participants. Consider the
following scenario: Alice uses Vula and has pinned Bob; she is
hostname.local with 10.0.0.2 as her IP address. Bob uses Vula;
he is at otherhostname.local with 10.0.0.3 as his IP address.
Bob leaves the network. Carol arrives on the network. Carol
does not use Vula. The DHCP server gives Carol 10.0.0.3 as
their IP address. Alice knows that only Bob is available at
10.0.0.3, but Bob’s WireGuard does not reply, so Alice cannot

talk to Carol and any attempt at communication will fail closed.
Unencrypted traffic will not leak out of the WireGuard tunnel.
When Bob returns, and the IP address is still in use he will
obtain a new IP address which Alice will learn through a Vula
broadcast. Alice will see that Bob now has at least two IP
addresses, and Alice will still be unable to reach Carol until
Carol obtains an IP address not used by a pinned Vula peer.
Carol is oblivious to all of this.

An unpinned peer is a temporary peer. Unpinned peers
remain until the user’s system moves to another network
segment, until the peer descriptor expires, or until a new
peer announces resources that conflict with this replaceable
peer. To securely reach the peer, Vula adds specific routes
for peer addresses to the vula device, and Vula additionally
configures the same addresses as being associated with the
cryptographic keys for the peer on the vula device. When
the peer is replaced or expires, the routes are removed, and
the cryptographic keys are removed from the vula device.

Often participants and non-participants are mixed on pri-
vate network segments that use commonly allocated pri-
vate [68] IP addresses. To prevent denial of service for
potentially communicating hosts, unpinned peers fail open for
the benefit of non-participant hosts.

E. Cryptographic choices

A protocol is said to have perfect forward-secrecy
(PES) [65] if compromise of long-term keys does not compro-
mise past session keys, Vula brings this property to IP traffic
for participating systems. From the perspective of public-key
cryptography, the attack targets in Vula are reducible to a
few specific problems. An attacker wishing to forge Vula
peer descriptors must be able to forge Ed25519 signatures
to break authenticity of the peer discovery and key exchange
mechanism. If the authentication process is not broken, the
attacker wishing to recover plaintext traffic must record traffic,
and then they must break X25519 [10] as used in WireGuard,
and CSIDH-512 to recover the PSK.

F. Automatic protection against passive adversaries

As Vula automatically encrypts traffic between hosts while
they are connected to the same broadcast domain, in the
absence of an active attacker it will always deny passive
adversaries the opportunity to decrypt traffic that they capture.

G. Automatic protection against active adversaries

Encryption relying on an unauthenticated key exchange is,
of course, intrinsically vulnerable to key-substitution attacks
by active adversaries who are present at the time of the
initial key exchange. The concept of authentication, however,
is meaningless in the absence of a notion of identity. In
the LAN setting in which Vula operates, there are several
notions of identity, such as hostnames, IP addresses, and MAC
addresses, but none of these are intrinsically authenticatable.
Therefore, without manual key verification or dependence on
some sort of public key infrastructure, it is not possible to
automatically authenticate the initial communication between
two hosts on a LAN. However, it is possible to automatically
provide protection against active adversaries who only become
active after that point, by following the trust-on-first-use [98]

(TOFU) pattern often employed by users of SSH: Keys are
implicitly assumed to be valid for hosts which have never been
contacted before, and continuity of vk public keys is enforced
for any subsequent communication. Unlike SSH, where users
are prompted to explicitly make the TOFU decision, Vula
has a configuration option called pin_new_peers which causes
newly-discovered peers to be automatically marked as pinned.
This is not the recommended default as it imposes user
interface awareness requirements on users as explained in
Section VI-D8 and shown in Figure 1.

Peers automatically pinned in the pin_new_peers state are
vulnerable to an active attack only at the time that they
discover peers for the first time. If their initial discover was
not compromised, Vula protects them against active attacks at
any later time.

For full protection against active attackers, including those
who could be present at the time of first contact, manual key
verification is necessary. When a peer is manually verified, it
is marked as pinned and is also marked as verified to allow
the user to distinguish it from peers pinned automatically by
the pin_new_peers state.

Vula provides a convenient-to use QR code-based tool for
performing peer verification. We describe this verification pro-
cess further in Section 6. To protect against active adversaries
who are present at the time of initial contact, it is necessary
to manually verify fingerprints.

H. Security-convenience trade-off

We consider the default behavior for Vula protocol imple-
mentations with regard to the usability and security outcomes.

1) pin_new_peers = true: As stated above, using the
pin_new_peers mode has the advantage that unverified peers
for whom the initial contact was not compromised are au-
tomatically protected against any subsequent active attacks.
The disadvantage is that when an IP address which has been
previously used by a Vula peer is later reassigned to a new
host, Vula users who learned about the previously associated
IP and are using pin_new_peers as their default mode will
be unable to communicate with the new host, regardless of
whether it runs Vula itself, until they explicitly remove the IP
address as associated with the previously existing public key
or the new host moves to a previously unassigned IP address.
Pinned peers accumulate IP addresses and hostnames where
manual removal may be necessary.

2) pin_new_peers = false: Marking new peers unpinned
by default has the disadvantage that new peers will remain
vulnerable to active attacks until they are explicitly marked as
pinned or verified. It has the advantage that it will gracefully
handle IP address reassignment and/or hostname collisions
without requiring any user interaction, so Vula could con-
ceivably be widely-deployed and enabled by default without
causing significant inconvenience while also thwarting passive
adversaries. Unpinned peers do not accumulate IP addresses
and hostnames, they are replaced by any conflicting announce-
ments, and they expire automatically.

I. Summary of protections

Vula should always provide confidentiality with respect
to passive adversaries. For peers that are pinned, it will also

protect against active adversaries as long as those did not com-
promise the first contact. For peers that are manually verified, a
successful verification ensures security against attackers which
were active even at the time of the first contact as any key-
substitution attack would make manual verification fail.

Although Vula protects the confidentiality of network traf-
fic between verified peers against both passive and active
attackers, we do not claim to be able to prevent traffic analysis
attacks which may be revealing. We also do not attempt
to prevent packet delaying or Denial-of-Service attacks, and
we admittedly do allow for some new minor avenues by
which DoS attacks can potentially be executed as explained
in Section VI-D. However, these are not significantly different
from the DoS vulnerabilities which are inherent in the LAN
setting. We remark that there is a need to design and deploy
enhancements to the underlying LAN protocols such as DHCP
and ARP.

IV. DETAILED PROTOCOL DESCRIPTION

The Vula protocol does not rely on any infrastructure and is
purely a peer-to-peer protocol. Every participant that wishes to
use the protocol must install the Vula software on the computer
system which has traffic it wishes to protect with the Vula
protocol. As a concrete example, a router running the Vula
software is able to provide a locally secured WireGuard tunnel
to any downstream clients who also run Vula. Downstream
clients may then communicate through the router to the internet
with all traffic protected between their respective systems and
the router itself. If the router itself does not have a Vula
peer upstream or another VPN tunnel, the traffic will be
unencrypted as it traverses subsequent routers. The benefit of
running this software on a router is that normally clients may
intercept each other’s traffic with minimal effort as explained
in Section VI-DI1, and with Vula, they would need to violate
some assumption of the protocol which is protected by strong

cryptography.

A. WireGuard

The Vula protocol relies on a secure tunneling protocol
for protecting IP packets between participating systems. We
have selected WireGuard [26] as our encrypted tunneling
protocol on the basis that it is well understood, peer-reviewed,
extremely efficient, performs exceptionally fast packet trans-
formation even under heavy system load, and is now a part of
the Linux kernel shipping with a number of GNU/Linux distri-
butions. Unlike IPsec, it is not suspected of being sabotaged by
the NSA. IP traffic between any given pair of hosts participat-
ing in the Vula protocol is protected by WireGuard. WireGuard
is modeled after the Noise Framework IK pattern [73, Section
7.5] which in turn has been updated to reflect some of the
needs of WireGuard. The IK pattern optionally allows any
pair of peers to use a symmetric pre-shared key (PSK) to
make the WireGuard protocol transitionally post-quantum in
addition to keys derived from both ephemeral and long term
keys. We take advantage of this and generate a pair-wise shared
secret with CSIDH. To a third party observer, the use of a PSK
is indistinguishable from other WireGuard traffic which does
not use a PSK. WireGuard presents an interesting constraint:
peers must be configured, and thus keys must be known
before the protocol is ready for use. This raises a number of

questions about efficient key exchange, as well as questions
about rotation of keys used in the protocol. Session keys rotate
every few minutes under normal usage conditions, though
long term keys must be rotated manually. WireGuard leaves
discovery of peer public keys, as well as configuration, as a
problem for the user to solve. Vula automates everything that
WireGuard has left for users to otherwise manually configure.

B. mDNS/DNS-SD: decentralized Vula peer discovery

Each user’s Vula descriptor contains their long term Wire-
Guard public key, along with their CSIDH public key. We
have chosen to automatically distribute Vula descriptors using
multicast DNS (mDNS [21]) and DNS Service Discovery
(DNS-SD [20], [23]), on the local network segment. DNS-
SD specifies structure for DNS records which may be used
to facilitate service discovery using DNS. When mDNS and
DNS-SD are combined together, DNS queries for local hosts
do not leave the local network segment to be properly re-
solved. Each Vula peer must publish a Service Name under
_opabinia._udp.local. * for their host. A query for the respec-
tive Service Name should return a TXT record containing a list
of values representing a Vula descriptor. The values required
for Vula are enumerated and briefly explained in Table II.

key example value description
addrs 192.168.6.9 List of addresses for Vula peer
c 36e8...c764 CSIDH public key for deriving pair-wise PSKs
dt 86400 Seconds after vf that descriptor is valid
e 0 Flag indicating that a peer is ephemeral
hostname alice.local Hostname
pk cWB8Ek...RO= WireGuard Curve25519 public key
port 5354 WireGuard UDP port number
r 1 IP forwarding services are available to peers
S adsLEe...a= Ed25519 signature over Vula descriptor
vf 1601388653 Starting validity of descriptor in seconds since 1970
vk ptKKec...OM= Ed25519 public key used to sign Vula descriptor

Table II: mDNS/DNS-SD Vula descriptor key, value examples

We presume that the generally insecure nature [45] of DNS,
even in the local LAN context with mDNS and DNS-SD,
is understood. As an alternative to DNSSEC [81] or other
proposals [44], Vula enhances the security of DNS-SD service
records with cryptographic signing of the service descriptors.
All computers which wish to deploy Vula must be able to
send IP packets to and receive from 224.0.0.251:5353 or
[FF02::FB]:5353 with the correct multicast MAC addresses
for any IP packet they send or receive respectively. These
packets should only contain properly formatted mDNS queries
or answers.

When a peer publishes its descriptor, all of the values
besides the signature s but including the verification key vk
are ordered and serialized into a string. A signature over the
string is computed and its value is stored in the final item,
s; the resulting set of name-value pairs is then added to the
DNS-SD Service record.

The verification key (vk) is used for authenticating Vula
protocol messages; currently the messages are used for peer
discovery and peer consistency, stateless rotation of IP ad-
dresses such as when a DHCP server gives a DHCP client
a new IP address, for rotation of the CSIDH public key and

3See Opabinia Regalis from the Middle Cambrian

derived PSKs, and for rotation of the WireGuard Curve25519
public key used by the vula device. This device appears as a
normal network interface with the name vula in various system
configuration tools.

C. Vula Protocol logic

In this subsection of the paper, we walk step-by-step
through a full protocol run for two peers on the same LAN
segment.

The same protocol scales to n possible peers. One peer
queries for the DNS-SD service and n devices may answer.
The only limit to the number of peers is the number of
addresses on the local segment, any internal limit on peers that
the WireGuard implementation may impose on configuring the
network interface, and on system memory.

When a peer receives a new descriptor, it evalu-
ates it according to a policy engine which considers
the peer’s current state and enforces various constraints.
We define the policy engine as a pure function which
computes the next policy state from the current state
and some event: ProcessEvent (PolicyEngineState,
Event) = PolicyEngineState’. Events include in-
coming descriptors, changes in the system state such as an
IP address being configured or unconfigured by a DHCP
client, or some user action. The Event objects contain a
timestamp indicating when the Event occurred, which allows
ProcessEvent () to make decisions which include time de-
spite being a pure function. A flowchart showing an overview
of the policy engine’s handling of the incoming descriptor
event is shown in Figure 1.

incoming
descriptor

valid
signature

accept

Figure 1: Incoming descriptor processing state engine

update peer

If the vk in a descriptor corresponds to a known peer and
the descriptor is different from the latest descriptor previously
seen from that peer, then the peer state is updated to reflect
the new descriptor; otherwise, a new peer entry is created. The

peer state includes a list of all hostnames and IP addresses
which each peer has ever announced, along with an enabled
flag for each. Newly announced IP addresses are marked as
enabled only if they are both in an acceptable subnet and they
do not collide with any pinned peers’ enabled IPs. Acceptable
subnets are those which are both on the list of allowed_subnets
and where the evaluating peer also has an IP bound at the
time that the descriptor is first seen. Hostnames are likewise
protected against collisions, and only accepted if they end with
an allowed suffix on the local_domains list which by default
is set to .local.

Collisions with unpinned peers’ hostnames and IPs are
governed by the overwrite_unpinned policy option; if it is
set, then unpinned peers’ can have their hostnames and IPs
immediately disabled and reassigned to newly discovered
peers. Unpinned peers are automatically removed from the
database when they have not made an announcement in at least
expire_time seconds, which defaults to 3600. Descriptors must
have a valid from (vf) value that is smaller than the current
time, and for already-known peers the value must be greater
than the previous descriptor from that peer. If the descriptor
sets the IP router flag, and the receiving peer processing it
sees that the announced IP address matches the current default
route, and the accept_default_route policy option is enabled,
then the peer’s use_as_gateway flag is set, which will cause
vula organize to configure the remote peer as the receiving
system’s default route and adjust the peer’s AllowedIPs value
accordingly.

D. Protocol steps

0) Phase 0: Alice and Bob both start with three keypairs
each. The Curve25519 keypair is used for the WireGuard
peer identity for the Vula device, the CSIDH keypair is
used to establish PSKs with other peers, and the Ed25519
keypair is used for signing Vula protocol messages.

1) Phase 1: Alice creates a protocol message N which
contains a cryptographic signature over the contained list
of values as shown in Table II.

2) Phase 2: The N value is used to construct a TXT record
for the mDNS service associated with Alice’s hostname
and all records (A, SRV, and TXT) are published by Alice
upon request.

3) Phase 3: Bob sends a query to the multicast ad-
dress for the network and queries for the Vula service
_opabinia._udp.local.

4) Phase 4: Bob receives Alice’s N protocol message

and any other messages of participating hosts for
_opabinia._udp.local.
Bob verifies the N descriptor is properly formatted and
that the signature is valid. Bob will then process the
N protocol message according to a set of constraints.
Any failure to meet the constraints as enumerated in
Section I'V-C will result in rejecting the Vula descriptor
N.

5) Phase 5: If the descriptor is not rejected, the Vula device
will also be reconfigured and system routes added as
needed. If there was a new IP address announced for an
existing peer, it will become the new endpoint for the
peer. Traffic to the new IP address will now be routed via
the Vula device. If the peer is in the pinned state, traffic

to its previous address or addresses will also continue to
be routed via the Vula device.

6) Phase 6: optionally verify peers: The final step of the
protocol is optional and highly recommended. To com-
plete this phase of the protocol, the end-user may verify
a peer’s vk either manually or with a convenient-to use
QR code. When the user has verified a peer, the peer’s
state is mutated to reflect that the peer is now both pinned
and verified.

E. Implementation

We have implemented Vula in Python 3 for GNU/Linux.
All of our software and changes to related software are Free

Software, and are available at the anonymous site https://vula.
link/.

Vula is separated into three distinct services: a publishing
daemon, a discovery daemon, and a configuration daemon. We
have implemented each of these daemons to have minimal
attack surface. Each participating host must run all of the
services listed here to properly use the Vula protocol with
other hosts on their LAN segment.

Our initial implementation of Vula made use of three differ-
ent CSIDH implementations depending on the platform where
it would be used. We first started with the reference implemen-
tation [17], it is a generic C program which runs on systems
with little-endian architecture and word size of 64 bits. We
found it lacking in portability and in side-channel protections
which is to be expected for a proof of concept implementation.
The x86_64 implementation [18] claims to be constant-time
and extremely fast, while the ARM64 [53] implementation is
constant-time and extremely slow computing key derivation.
The performance of each C implementation relied on specific
CPU features which made portability extremely difficult. Addi-
tionally, each implementation had its own serialization formats
which were incompatible. We later adopted a pure Python
CSIDH implementation [4] [3]. While significantly slower than
the reference or other implementations in C as mentioned in
Section IV-I, the Python implementation allowed for support-
ing any CPU architecture where Python is available with a
single implementation. Python does not require separate builds
for each of our systems’ CPUs (RISC-V, AMD64, POWERSY,
ARM64, ARM32, x86) and it provides memory safety. All
available CSIDH implementations in C use unportable Intel or
ARM assembly. Vula’s handshake is not performance-sensitive
and key derivation is cached for previously seen public keys.
We additionally implemented serialization formats for CSIDH
keypairs which should allow for greater interoperability. Bulk
encryption of IP packets is handled efficiently by in-kernel
WireGuard.

Slow key derivation may be a denial of service vector
for embedded devices which decide to deploy a constant-time
implementation over the reference implementation. We have
extended each of the previously mentioned CSIDH implemen-
tations to include a basic tool for key generation and key
derivation as well as shared secret generation. These tools
are not currently used as Vula has chosen portability over
performance at this time. After a shared secret is generated,
we use a standard HKDF [57] construction to hash the secret
value before use in any cryptographic context.

https://vula.link/
https://vula.link/

F. Multi-daemon systemd integration or monolithic mode

The Vula implementation operates by default in multi-
daemon mode with vula organize, vula discover,
and vula publish daemons. Multi-daemon mode includes
systemd configuration files to run as several systemd services
at install time. Each of the daemon services is run as a systemd
service with minimal privileges, e.g.: as an unpriviledged user
which has minimal access to the overall system. The services
are grouped in a systemd slice called vula.slice. Each
daemon follows the principle of least authority: each service
has the minimum set of capabilities and permissions required
to accomplish the specific tasks of the daemon. Further details
about Vula systemd integration are available in Appendix C.

For systems that do not support systemd or for systems
where only a single daemon is desired, the Vula implemen-
tation can also run all required services as a single process.
The monolithic mode combines the vula organize, vula
discover, and vula publish daemons into a single
daemon, vula, which retains the superset of all other required
daemon privileges which are normally compartmentalized
away.

G. Vula peer tunnel considerations

During the vula organize daemon startup the local
peer cache is loaded before new configuration information
is accepted from the discovery daemon. After configu-
ration of previously known peers, the organize daemon
sits idle until a new descriptor is sent by the discover
daemon or until another network event changes the system
state. Key changes, IP address information, route updates, and
interprocess communication from the command line interface
are handled by this daemon.

The vula device is a normal WireGuard network interface
which is entirely managed by the Vula organize process.
This device has a single long-term identity which corresponds
to the Curve25519 public key in the Vula descriptor announce-
ments. Unlike normal usage of WireGuard, this key may be
rotated at any time as long as the newly generated public key is
announced to the local network or the descriptor is otherwise
shared with Vula peers. WireGuard peers on the vula device
always have a pre-shared key set. This key is derived from the
CSIDH public key of the peer, and the CSIDH private key of
the device owner. This key may also be rotated at any time
as long as the new public key is also announced to the local
network.

1) IP packet marking: IP packet marking is required to
ensure that unencrypted packets are encrypted by the vula
WireGuard device when appropriate as well as to mitigate
routing loops of already encrypted packets. An important
corner case with any point-to-point tunnel is to guarantee that
packets which should be encrypted are encrypted. When a
failure to encrypt happens and an unencrypted packet is sent
over a device other than the VPN device, it is generally called
a bypass or a leak. IP packet marking allows Vula to use
WireGuard in a way that prevents this class of catastrophic
failures that are common with point-to-point VPN software.
Other VPN software that does not use IP packet marking
suffers from catastrophic traffic bypass issues [77] which may
be exploited by an adversary. One example where a bypass

may occur is that WireGuard devices are configured with
a peer at a given endpoint IP address, UDP port, and a
list of AllowedIPs. Without IP packet marking, the endpoint
address cannot be inside of any IP range in the AllowedIPs
list unless AllowedIPs is 0.0.0.0/0, and with marking, desired
traffic always traverses the Vula device, and it does not leak
unencrypted IP packets.

H. Memorable and Secure: Pet-Names

Vula’s network based discovery and publication is built on
top of the trivially insecure mDNS protocol. Local active at-
tackers are able to trivially forge responses to queries broadcast
to the local network segment. It is for this reason that we turn
select hostnames under the existing .local namespace into a
secure petname [87] system.

Vula learns hostnames automatically as part of peer dis-
covery. As currently implemented the Vula descriptor includes
a .local hostname in its signed mDNS descriptor announce-
ments. The signed .local hostnames in announcements from
permanent peers are accumulated in a similar fashion as IP
addresses already are: if a name is not already claimed, it
will be added to the list of previously accepted names which
that key has announced, all of the key’s names resolve to the
latest IP announced. By default, Vula scopes the name to only
allow for claiming names under .local, or by a user setting
a specific policy. This prevents an attacker from claiming
a popular hostname while allowing them to claim a locally
relevant hostname *.

The Vula hosts file is used by a Name Service
Switch (NSS) module [42] which requires reconfiguration
of /etc/nsswitch.conf; our Vula implementation pro-
vides packages that perform this configuration automatically
at package install time. Therefore, Vula provides protection
of the authenticity of mDNS hostnames of participating Vula
systems. The Vula vk is currently scoped to the hostname and
only one vk may be the claimant of any single hostname,
though in principle many hostnames is fine, none may conflict
amongst all peers.

1. Post-Quantum considerations by the CSIDH

Several approaches have been proposed for enhancing
WireGuard with regard to attacks from quantum computers.
In Tiny WireGuard Tweak [8], the authors explain that to gain
resistance to attacks by quantum computers, the Curve25519
public key used by WireGuard peers must be further concealed.
The suggested enhancement is incompatible with Vula as the
WireGuard public keys must be published with mDNS. We
considered privacy improvements to mDNS and think this area
is worth exploring in a future publication. However, absent
privacy protections for mDNS service publications, we found
the hiding of public keys to be impractical at this time.

In Post-quantum WireGuard [49], the authors proposed
a post-quantum enhancement which effectively replaces the
current WireGuard protocol with a post-quantum WireGuard

4After peer processing, the vula organize daemon writes a hosts
file to disk in /var/lib/vula-organize/hosts which contains the
current list of known hostnames and their respective IPv4 endpoints in classic
/etc/hosts format.

protocol. Adopting this underlying protocol would add post-
quantum protections for IP packets from attacks posed by
universal quantum computers. The Post-Quantum WireGuard
protocol has a great deal of promise. It additionally has prac-
tical implementation drawbacks for our envisoned deployment
of Vula. Like WireGuard, it requires pre-configuration of peers
by their public keys, and unlike WireGuard, it uses much larger
public keys that do not easily fit in a single IP packet. The
current implementation [48] is only available as a Linux kernel
patch and it is incompatible with all other WireGuard imple-
mentations which makes cross platform support impractical.

One promising method to achieve post-quantum protection
for traffic protected by the current WireGuard protocol is to
set a per-peer pre-shared key. We had the idea to derive the
PSKs by computation, using a different cryptosystem, rather
than simply setting a symmetric key. If that system is a post-
quantum key exchange, IP traffic will be further protected.
We chose to use CSIDH for Vula to achieve transitional post-
quantum security.

Each Vula peer announces their CSIDH-512 public key.
This only adds 93 bytes to the mDNS service announcement
when encoded as base64 and while accounting for DNS-
SD overhead. All Vula descriptor data continues to fit into
a single packet. Vula could rely on an architure specific
C implementation where computing a PSK for a peer with
CSIDH would take roughly 111 milliseconds on x86_64 [18].
However, we have chosen portability over performance. This
choice results in signfigiantly longer computation time with a
pure Python CSIDH implementation as shown in Table III and
Table IV. Implementation details and platform specifics may
dictate other constraints. Even with the pure Python CSIDH,
we find it to be a negligible computational cost for potential
protection against an adversary with a quantum computer.

Regarding the selection of CSIDH-512, CSIDH adds to the
X25519 security already built into WireGuard. The purpose of
this addition is to protect against the risk of quantum computers
being built that are large enough to break X25519. Most
post-quantum encryption options [70] are Key Encapsulation
Mechanisms (KEMs), which need point-to-point communi-
cation, leaving CSIDH as the only practically deployable
non-interactive key exchange (NIKE) choice compatible with
broadcast channels. Current estimates to break CSIDH-512
with a quantum computer take around 25° qubit operations,
each of those costing as much as roughly 2% bit operations.

The use of a post-quantum signature system such as
SPHINCS+-128s [12] could replace the use of Ed25519 in
the Vula protocol as long as the mDNS record size does not
exceed 9000 bytes [21] split over multiple 1500 byte Ethernet
frames if necessary. The SPHINCS+-128s signatures are 7856
bytes for 128-bit post-quantum security levels and the typical
record size of a Vula key, value descriptor is around 300 bytes.
We found that while the standard does allow larger record size,
the underlying mDNS libraries we use did not. Furthermore,
by using larger signatures we would move from a single 1500
byte packet for informing the entire local multicast group of a
systems’ descriptor to between five and six packets. It remains
an open research question if such overhead is worthwhile
absent an active attacker who possesses a universal quantum
computer.

10

V. PERFORMANCE

In this section we consider the performance of Vula’s
cryptographic choices. Post-quantum protections provided by
CSIDH is explored in Section V-A. Bulk encryption is handled
by WireGuard in-kernel, and we consider its performance
in Section V-B. Additional measurements are available in
Section B in the Appendix.

A. CSIDH performance evaluation

At peer discovery time, Vula uses CSIDH to generate a
pairwise PSK. Each peer computes a shared key computation
using its own secret key and the respective public key of each
other peer. We show the performance time in Table III and in
Table IV for five popular CPU architectures.

Table III: Python CSIDH-512 shared key computation
execution time in seconds averaged over 128 runs

Arch
CPU
Frequency
CSIDH

amd64
i7-9750H
3.4Ghz
6.25

amd64
Zen R1606G
1.39Ghz
9.38

Arch
CPU
Frequency
CSIDH

aarch64
Cortex-A72
1.5Ghz
26.16

riscvo4
rv64imafdc

1.5Ghz

130.324

ppcbdle
POWERY9
3.2GHz
20.01

Table IV: Python CSIDH-512 shared key computation
execution time in seconds averaged over 128 runs

The performance of the pure python CSIDH leaves much
to be desired and is an area in need of architecture-specific
performance improvements. A pure C implementation that has
speed as the only goal is around two orders of magnitude faster
than the pure Python approach. A hybrid approach of extending
the SIBC Python module with C for architecture specific
operations is almost certainly an ideal compromise. Caching of
CSIDH derived symmetric keys as well as background com-
putation for the shared key computation additionally improve
performance. We consider that CSIDH computations present a
possible denial of service vector to Vula until native C bindings
are developed.

B. Network performance evaluation

We examined the performance in both ideal lab conditions
and in an actual home network deployment. Performance
greatly varies by CPU architecture.

We observed that performance is not an issue with the
underlying WireGuard transport. We found that WireGuard
was able to sustain a consistent 1Gb/s in each direction using
full duplex Ethernet devices as seen in Figure 2 using a
FLENT [47], [36] TCP bidirectional measurement test. The
solid green and solid orange lines represent the upload and
download performance for IP traffic processed by WireGuard.
The dotted green and dotted orange lines represent the upload
and download performance for IP traffic without any protection
from WireGuard on the same system. The latency of IP traffic
is represented by the solid purple line for WireGuard and the
dotted purple line is without any protection from WireGuard.

1000

‘.m‘ M|!‘l||ll i L m‘” l' I

Cl i e |wuww“ " f’l |

!

i

\ il
mn\lmm Al i

i wviv il e

mHMﬂ

m m [

850

200
Time (s

Figure 2: FLENT throughput and latency measurement

Notice that Figure 2 shows that IP traffic latency perfor-
mance is sometimes better when IP packets are encrypted with
WireGuard. This is surprising as we would expect packet pro-
cessing to take a constant amount of time and for WireGuard
encryption to incur an extra cost in addition; this is true and
due to kernel scheduling, WireGuard packets appear to be
processed faster in many cases under load.

Our primary test systems for this evaluation were an Intel
NUC running Ubuntu 20.04 with an Intel 17-8705G CPU and
an AMD Ryzen Embedded R1606G with Ubuntu 20.10. The
NUC has an Intel 1219-LM Gigabit Ethernet device and the
AMD system uses an Intel 1211 Gigabit Ethernet device. The
switching fabric used is the prosumer Unifi Gigabit Ethernet
by Ubiquiti. Latency is naturally increased as a side effect
of sustained 2Gb/s traffic over time. When not under extreme
network load, the latency is nearly indistinguishable.

1000

Figure 3: FLENT throughput and latency measurement

In Figure 3 we examine transmission of multiple flows with
high performance switching equipment from Allies Telesis
(x930 series; 48 1Gb/s ports) using two Dell PowerEdge R240
systems (Intel(R) Xeon(R) E-2124 CPU @ 3.30GHz with
BCMS5720 gigabit network card). We see that the throughput
and latency for transmitted packets are again consistently
lower and with significantly less variability. The solid green
line represents traffic to another Vula peer and this traffic
is protected by WireGuard. The dotted green line represents
traffic to a non-Vula peer. The solid orange line shows latency
with a Vula peer and the dotted orange line shows latency to a
non-Vula system. The difference in total bytes of payload sent
remains to be investigated, and may be related to maximum

11

transmission unit (MTU) of the underlying Ethernet network.

VI. SECURITY EVALUATION

The security of IP traffic protected by Vula is provided
by the WireGuard protocol as outlined in the 2017 NDSS
paper [26], which relies on Curve25519, ChaCha20, Poly1305,
and BLAKE2. It is further enhanced by setting the optional
WireGuard peer-wise pre-shared symmetric key which the
Vula protocol generates using CSIDH-512.

Vula’s protection against active adversaries on descriptor
announcements as described in Section IV-C is dependent on
the security of Ed25519 signatures, and a specific order of
operations as outlined in section VI-A through section VI-E.

A. Vula Security Goals

The Vula protocol aims to automatically protect IP traffic
for the local ethernet segment with end-to-end encryption.
When Alice wishes to transmit an IP packet to Bob, and this
traffic would otherwise be sent directly on the local segment,
Vula will configure the local system to automatically upgrade
the security of the IP packets by sending them over the Vula
WireGuard interface. The Vula interface does not have an
IP address assigned to it; the IP packets have the same IP
addresses inside and outside of the tunnel.

B. Data and Metadata

Users of wireless and wired Ethernet networks leave behind
a number of unique data points. The Vula protocol seeks
to reduce the data and metadata sent unencrypted overall.
However, broadcast traffic such as mDNS data, including Vula
announcements, any layer-two traffic such as ARP traffic with
the MAC address > or addresses of each system, and traffic to
hosts which are not using Vula, will be unencrypted as usual.
Users of the Vula system will additionally generate a signed
descriptor that may be verified by any third party.

C. Formal verification

We have proven that our model of the Vula protocol in
Listing 1 in the Appendix is secure against both passive and
active adversaries with Verifpal [54], [55], a symbolic formal
verification tool. Verifpal has cryptographic constructions that
make modeling protocols a straight-forward, easy to read, easy
to understand exercise. Verifpal models form a basis for se-
curity and privacy-property-centric queries and thus proofs of
protocol properties. Our Verifpal model captures the conditions
and constraints expressed in Section III-D, and the Verifpal
analysis confirms that the Vula protocol is secure in the passive
attacker model without any public key verification, and that

SAs it is understood that MAC addresses are used as a kind of covert
communication channel about a systems’s cryptographic state. An example is
that the MAC address of a common router platform may be used as a lookup
for its initial cryptographic state. Private correspondence regarding Oday
BULLRUN-style [90] cryptographic “enabling” in ARM CPU configuration
for a popular router brand. It also is understood that some adversaries collect
MAC address information from drones and satellites in outer space [83] for
at least geolocation reasons. As these MAC addresses are collected broadly,
we encourage users to change the default MAC address at least once in the
lifetime of their computer. This change should be inconsequential to everyone
except saboteurs [13]. As this kind of sabotage has become known as sigint
enabling, we consider counter actions to be sigint disabling.

it is secure in the active adversary model if the long term
vk public keys are verified. The queries show that descriptor
updates are fresh, signed, authenticated, and that long term
secret keys stay confidential:

queries|
freshness? sig_a_0
freshness? time_stamp_a_0
authentication? Glenn -> Laura:
confidentiality? ss_a

]

sig_b_0

The first asks about the freshness of the signature from Alice.
The second asks about the freshness of the vf timestamp. The
third asks about the authentication of the signature from Alice.
The last query asks about the confidentiality of the shared
secret computed by Alice. Verifpal confirms all these (and
similar queries for Bob) pass. Verifpal outputs:

Verifpal = All queries pass.

As always, formal analyses have limitations. Major risks
that would not be ruled out by this analysis include the
following: breaks in the WireGuard integration, cryptographic
breaks in any of the assumed perfect cryptographic primitives,
and/or any possible issues with Verifpal itself.

We have taken steps to secure the Vula traffic against active
adversaries with our use of Ed25519. We have also taken steps
to secure the Vula traffic against passive quantum adversaries
who are able to record traffic and then later attack the recorded
data’s cryptography with their quantum computer. The protocol
will need to be revised when quantum computers become
available as Vula does not currently resist an active quantum
adversary. Such an adversary should be able to forge Ed25519
signatures and would be able to publish new Vula descriptors
to their advantage which would completely break Vula.

D. Active attacks against Vula

Here we discuss some attacks against systems on a local
area network with and without Vula.

1) Address Resolution Protocol: Unrelated to the Vula
protocol, the Address Resolution Protocol (ARP) allows for
selectively targeting users by carrying out an ARP poison-
ing [76] attack. An attacker able to successfully ARP poison
a target is able to place themselves into an on-path position.
This attacker may delay, drop, or modify traffic depending on
the protection available for any given IP packet.

With Vula in place, an on-path attacker is no longer able
to modify traffic protected by Vula, adversaries will only be
able to delay or drop encrypted packets. They may be able to
interfere with mDNS and other unencrypted broadcast traffic.

2) Dynamic Host Configuration Protocol: Users who use
the Dynamic Host Configuration Protocol (DHCP) to obtain an
IP address automatically from the network are susceptible to
DHCEP related attacks. Attackers acting as a DHCP server may
assign a targeted user any address on any subnet, and they may
change the lease of any system on the network segment to a
new IP address. References to previous IP address assignments
would then be stale until a new Vula descriptor containing the
new IP address is broadcast to the network.

12

3) MAC address vs IP address vs hostname security: Vula’s
use of petnames is important to security and paricipants should
use the local names to address peers. To see the importance,
consider either the ARP attack vector or the DHCP attack vec-
tor. Our Pet-Name system from Section I'V-H is a required part
of ensuring Vula’s security claims in either case. Hostnames
for Vula peers are cached locally into hostname, IP address
pairs based on atomic processing of Vula peer descriptors.
Additionally, and most critically: some IP addresses are routed
via the Vula WireGuard device and some are not. If users use
the Vula protected hostname, they will receive the latest IP
that is routed through WireGuard for that respective Vula peer.
This ensures that unless there is a valid WireGuard session,
the packets will buffer, or drop before being sent or if there
is a valid session but the peer has moved, they will be sent
encrypted but no replies are expected.

The Vula Pet-Name system from Section IV-H does not
prevent the DHCP attack where Alice is connecting to Bob’s
actual IP. Mallory published her key before she tricked Bob
into moving there. However, if users understand that they
should rely on names to connect to Bob’s system rather
than IP addresses when referring to Vula peers, then from
Alice’s perspective bob.local will continue to resolve to the last
announcement from Bob which she considered valid. As Bob
unbound his old IP when Mallory tricked him, Alice will not
be able to reach him there, but the use of the name system has
downgraded Mallory’s attack from a confidentiality break to a
mere Denial-of-Service. The same applies to the simplier ARP
attack: as long as the packets first pass through the WireGuard
device, they will be protected, and only by using hostnames is
this guaranteed. This is why using secure names and having
Vula perform the resolution is mandatory for Vula’s security.

4) Traffic analysis: An attacker monitoring traffic as either
an on-path or off-path attacker has the ability to perform
traffic analysis such as website fingerprinting [46] or other
traffic classification [6]. This capability may allow for targeted
on-path selective blocking even when traffic is protected.
WireGuard, and thus Vula, does not attempt to resist traffic
analysis through timing obfuscation, padding, or other schemes
such as generating dummy traffic or mixing.

5) Selective blocking: Attackers can selectively prevent
certain packets, such as Vula announcements, from being
delivered. This can prevent new peers from being automatically
discovered, and can prevent existing peers from learning about
each other’s address changes, which can cause Denial-of-
Service. Such an attack does not allow a breach of confiden-
tiality between peers that are already pinned at the time of the
attack because of the secure petname system.

6) Continuity of Verification Keys: We learn about peers
and index them by their verification key. All other keys are
considered peer-specific state and we allow rotation of those
values. This means that the WireGuard and CSIDH public key
may be rotated by issuing a new descriptor signed by the vk
keypair. It is for this reason that the Verification Key must not
change as it is the root of trust, and additionally, the hostname
list, and the IP address list, are indexed under the Verification
Key. No two peers may have overlapping hostnames or IP
addresses.

7) Key substitution: Absent pinning as introduced in Sec-
tion III-D, peers are replaceable, and active adversaries may
announce their own descriptors, with conflicting resources, and
with their own keys for two or more peers, enabling an active
MITM attack. Peer substitution is possible against Vula peers
which are not pinned, and new peers when they are making first
contact. Using this attack, an active adversary can observe and
bidirectionally forward IP packets between pairs of victims, or
even in a single direction. This attack can be performed by an
adversary with the capability to drop or replace targeted Vula
peer mDNS announcements, and may be combined with other
attacks such as ARP spoofing as mentioned in Section III-B.
Adversaries are not able to breach confidentiality for pinned
peers. Peers in the replaceable state are only secure against
passive adversaries, and peers in the pinned state are secure
against active adversaries from peer replacement attacks.

8) Further protection against active adversaries: Vula
makes some trade-offs by default which may be adjusted
according to a specific deployment’s desired security prop-
erties. All options are implemented in our Python reference
implementation. Users of Vula concerned about active adver-
saries must configure Vula for their use case. By default, Vula
does not require users to be aware of the software or any
configuration option after installation. As mentioned in the
peer replacement attack section, Vula peers are replaceable
by default and this is only safe against a completely passive
adversary. In the unpinned, replaceable state, peers expire,
and any conflicting peer descriptor will simply replace the
original peer entirely. Expiration of peers ensures that non-
Vula systems will retain connectivity in the event of IP
address reuse. In the pinned, permanent state, a user must
resolve any resource conflicts manually, and the first peer
descriptor to arrive and be pinned will always remain during
automatic descriptor conflict resolution. To accommodate users
who are unable or unwilling to manually resolve IP address
conflicts, Vula defaults to all peers starting in a replaceable
state. Changing the default is straightforward at install or run
time. The pin_new_peers configuration option default state
is false. The benefit is that normally-occurring IP address
or hostname collisions will be handled normally as if Vula
were not in use; the disadvantage is that active attackers are
able to replace peers, and are not thwarted even while being
detectable. This default configuration is intended to be suitable
for all deployments without requiring any user awareness of
Vula at all. For protection against active attackers who are not
present before first contact, a knowledgeable user can choose
pin automatically by setting pin_new_peers to true. This
setting means that naturally-occurring IP address or hostname
collisions will sometimes lead to an inability to communicate
with affected Vula or non-Vula hosts. Pinned hosts may always
update their own resources, and their descriptors must not
conflict with any other pinned Vula peers or it will be rejected
entirely. In any case, a user may always pin or verify a peer
regardless of defaults, and they may set their own defaults at
install time.

E. Adversary evaluation

We consider the adversary definitions from Section III and
their respective attack vectors. As described in Section III-B
all layer-two traffic remains unprotected such as ARP as
well as layer-three IP broadcast traffic. Any active adversary

13

as described in Section III may delay, drop, and/or store
any traffic where they have successfully performed an ARP
poisoning attack. When operating with Vula, nearly all intranet
traffic to participating systems will be protected in a forward-
secret manner which defeats passive adversaries automatically.
Using a trusted third party would allow for automatic trust
decisions, but there is no suitable trusted third party in the
context of every LAN, and across organizational boundaries.

1) Unilateral Surveillance: Vula completely defeats the
Unilateral Surveillance Adversary in a forward-secret man-
ner that is not dependent on a wireless passphrase. Thus,
regardless if there is wireless encryption or wireless passphrase
rotation policies, Vula successfully defeats the Unilateral
Surveillance Adversary for the types of traffic which are
protected by Vula. When the router deploys Vula, all traffic
to the internet may be protected from interception in the local
LAN context.

2) End User: Vula partially defeats the End User adver-
sary for the types of the traffic which are protected by Vula. It
reduces the adversary capabilities to denial-of-service as they
are only able to delay or drop Vula protected traffic. Recording
of the traffic is now largely useless thanks to the forward
secrecy provided by the underlying WireGuard transport. The
protection is bound by time of adversary arrival, default peer
pinning status, and by peer verification status. If the End User
adversary arrives before some other users, the adversary is able
to claim possession of any currently unclaimed IP addresses,
including addresses which may conflict with DHCP leases of
newly arriving users. This would allow the adversary to be a
Vula peer for an IP address assigned by DHCP to another user,
thus impacting all subsequent users on the network. Active
attacks by long-term adversaries can only be detected and
defeated by manual key verification.

3) Network Operator: Vula successfully defeats the Net-
work Operator adversary for the majority of the traffic which
is protected by Vula. Intra-network traffic is protected between
any set of systems deploying Vula, and peers should be pinned,
as well as verified.

If the router also deploys Vula, all traffic to the internet
is protected from interception in the local LAN context. The
Network Operator is still able to monitor it on the gateway
itself. Using an additional protection mechanism such as a
layered VPN may reduce the adversary capabilities to delaying
or dropping traffic which is destined for the internet.

VIIL

Vula enhances the confidentiality, integrity, and authenticity
of IP traffic which is routed to or through another Vula peer.
The cryptographic overhead with regard to performance for
Gigabit networks is negligible. Without any configuration,
or even any user awareness that Vula exists on their sys-
tem, the protection provided by Vula completely defeats a
passive adversary, and active adversaries arriving after the
first contact with automatic pinning. With user awareness and
peer verification, all active adversaries are also defeated until
such a time in which they have the ability to forge Ed25519
signatures, e.g. with access to an universal quantum computer.
Our implementation has been released anonymously [96] as
Free Software available for deployment, and is now deployed
on our home and other production networks.

CONCLUSIONS

(1]

[2]

[3]

(4]

(3]

[6]

(7]

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

A. Abdelrahman, H. Khaled, E. Shaaban, and W. S. Elkilani, “WPA-
WPA2 PSK cracking implementation on parallel platforms,” in 2078
13th International Conference on Computer Engineering and Systems
(ICCES). IEEE, 2018, pp. 448-453.

B. D. Aboba, J. Malinen, P. Congdon, J. A. Salowey, and M. Jones,
“RADIUS Attributes for IEEE 802 Networks,” RFC 7268, Jul. 2014,
https://rfc-editor.org/rfc/rfc7268.txt.

G. Adj, J.-J. Chi-Dominguez, and F. Rodriguez-Henriquez, “On
new Vélu’s formulae and their applications to CSIDH and B-SIDH
constant-time implementations,” IACR Cryptol. ePrint Arch., vol.
2020/1109, 2020, https://eprint.iacr.org/2020/1109.

——, “SIBC Python library,” https://github.com/JJChiDguez/sibc/,
2021.

J. Appelbaum, A. Gibson, J. Goetz, V. Kabisch, L. Kampf, and
L. Ryge, “NSA targets the privacy-conscious,” 07 2014, https://
daserste.ndr.de/panorama/aktuell/nsa230_page- 1.html.

——, “NSA XKeyscore source code,” 07 2014, https://daserste.ndr.de/
panorama/xkeyscorerules100.txt.

J. Appelbaum, A. Gibson, C. Grothoff, A. Miiller-Maguhn,
L. Poitras, M. Sontheimer, and C. Stocker, “Inside the NSA’s War
on Internet Security,” https://www.spiegel.de/international/germany/
inside- the-nsa-s-war-on-internet-security-a- 1010361.html, 12 2014.

J. Appelbaum, C. Martindale, and P. Wu, “Tiny WireGuard Tweak,”
in Progress in Cryptology - AFRICACRYPT 2019 - 11th International
Conference on Cryptology in Africa, Rabat, Morocco, July 9-11, 2019,
Proceedings, ser. Lecture Notes in Computer Science, J. Buchmann,
A. Nitaj, and T. Rachidi, Eds., vol. 11627. Springer, 2019, pp. 3-20,
https://doi.org/10.1007/978-3-030-23696-0_1.

J. Appelbaum, L. Poitras, M. Rosenbach, C. Stocker, J. Schindler, and
H. Stark, “Documents reveal top NSA hacking unit,” December 2013,
https://tinyurl.com/4ewxxejj.

D. J. Bernstein, “Curve25519: new diffie-hellman speed records,” in
Public Key Cryptography-PKC 2006. Springer, 2006, pp. 207-228.

D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B. Yang, “High-
Speed High-Security Signatures,” in Cryptographic Hardware and
Embedded Systems - CHES 2011 - 13th International Workshop,
Nara, Japan, September 28 - October 1, 2011. Proceedings, ser.
Lecture Notes in Computer Science, B. Preneel and T. Takagi, Eds.,
vol. 6917. Springer, 2011, pp. 124-142, https://doi.org/10.1007/
978-3-642-23951-9_9.

D. J. Bemnstein, A. Hiilsing, S. Kolbl, R. Niederhagen, J. Rijn-
eveld, and P. Schwabe, “The SPHINCS+ Signature Framework,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’19. New York, NY,
USA: Association for Computing Machinery, 2019, p. 2129-2146,
https://doi.org/10.1145/3319535.3363229.

D. J. Bernstein, T. Lange, and R. Niederhagen, “Dual EC: A stan-
dardized back door,” in The New Codebreakers - Essays Dedicated to
David Kahn on the Occasion of His 85th Birthday, ser. Lecture Notes
in Computer Science, P. Y. A. Ryan, D. Naccache, and J. Quisquater,
Eds., vol. 9100. Springer, 2016, pp. 256281, https://doi.org/10.1007/
978-3-662-49301-4_17.

A. Bittau, D. B. Giffin, M. J. Handley, D. Mazieres, Q. Slack, and
E. W. Smith, “Cryptographic Protection of TCP Streams (tcpcrypt),”
RFC 8548, May 2019, https://rfc-editor.org/rfc/rfc8548.txt.

D. Campbell, “London Internet Exchange members vote no to con-
stitution tweak; Peering peers reject proposed rules on keeping quiet
about secret govt gagging orders,” 2017, https://www.theregister.com/
2017/02/22/linx_members_vote_to_block/.

W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes,
“CSIDH: an efficient post-quantum commutative group action,” in
International Conference on the Theory and Application of Cryptology
and Information Security. Springer, 2018, pp. 395-427.

——, “CSIDH reference implementation source code,” 2018, https:
/lyx7.cc/code/csidh/csidh-latest.tar.xz.

D. Cervantes-Vazquez, M. Chenu, J. Chi-Dominguez, L. D. Feo,
F. Rodriguez-Henriquez, and B. Smith, “Stronger and faster side-
channel protections for CSIDH,” in Progress in Cryptology - LAT-
INCRYPT 2019 - 6th International Conference on Cryptology and

14

(19]

[20]

[21]

[22]

[23]

(24]

(25]

(26]

[27]

[28]

[29]

[30]
(31]
[32]
[33]
(34]
[35]
[36]

[37]

[38]

(39]

[40]
[41]

[42]

[43]

Information Security in Latin America, Santiago de Chile, Chile,
October 2-4, 2019, Proceedings, ser. Lecture Notes in Computer
Science, P. Schwabe and N. Thériault, Eds., vol. 11774. Springer,
2019, pp. 173-193, https://doi.org/10.1007/978-3-030-30530-7_9.

S. Cheshire, B. Aboba, and E. Guttman, “Dynamic Configuration of
IPv4 Link-Local Addresses,” RFC 3927, May 2005, https://rfc-editor.
org/rfc/rfc3927.txt.

S. Cheshire and M. Krochmal, “DNS-Based Service Discovery,” RFC
6763, Feb. 2013, https://rfc-editor.org/rfc/rfc6763.txt.

——, “Multicast DNS,” RFC 6762, Feb. 2013, https://rfc-editor.org/
rfc/rfc6762.txt.

J. Y. Cho and A. Sergeev, “Post-Quantum MACsec Key Agreement
for Ethernet Networks,” in Proceedings of the 15th International
Conference on Availability, Reliability and Security, ser. ARES ’20.
New York, NY, USA: Association for Computing Machinery, 2020,
https://dl.acm.org/doi/10.1145/3407023.3409220.

D. Crocker, “DNS Attrleaf Changes: Fixing Specifications That Use
Underscored Node Names,” RFC 8553, Mar. 2019, https://rfc-editor.
org/rfc/rfc8553.txt.

W. Diffie, “Securing Networks: End-to-End Encryption vs. Link
Encryption and Trusted Systems,” in Proceedings of the 1983 IEEE
Symposium on Security and Privacy, Oakland, California, USA, April
25-27, 1983. IEEE Computer Society, 1983, pp. 136—138, https:
//doi.org/10.1109/SP.1983.10021.

D. Dolev and A. C. Yao, “On the security of public key protocols,”
IEEE Trans. Information Theory, vol. 29, no. 2, pp. 198-208, 1983.
J. A. Donenfeld, “Wireguard: Next generation kernel network
tunnel,” in 24th Annual Network and Distributed System
Security Symposium, NDSS 2017, San Diego, California, USA,
February 26 - March 1, 2017. The Internet Society, 2017,
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/
wireguard-next- generation- kernel-network- tunnel/.

R. Droms, “Dynamic Host Configuration Protocol,” RFC 2131, Mar.
1997, https://rfc-editor.org/rfc/rfc2131.txt.

P-E. Eriksson and B. Odenhammar, “VDSL2: Next important broad-
band technology,” Ericsson Review, vol. 1, pp. 36-47, 2006.
European Court of Human Rights (ECHR), “Klass and Others v.
Germany,” p. 28, 1978.

——, “Malone v. United Kingdom,” p. 14, 1984.

, “Leander v. Sweden,” p. 433, 1987.

, “Weber and Saravia v. Germany,” p. 1173, 2006.
——, “Kennedy v. United Kingdom,” p. 682, 2010.
——, “Roman Zakharov v. Russia,” p. 1065, 2015.

, “Szabé and Vissy v. Hungary,” p. 579, 2016.

Flent Authors, “Flent source code and web page,” https:/flent.org/,
2017.

J. Font, “An open source, self-hosted implementation of the Tailscale
control server,” https://github.com/juanfont/headscale, 2020.

S. Frankel and S. Krishnan, “IP Security (IPsec) and Internet Key
Exchange (IKE) Document Roadmap,” RFC 6071, Feb. 2011, https:
/lrfc-editor.org/rfc/rfc6071.txt.

R. Gallagher, “Inside Menwith Hill: The NSA’s British Base at the
Heart of U.S. Targeted Killing,” 2016, https://theintercept.com/2016/
09/06/nsa-menwith-hill-targeted- killing- surveillance/.

P. Geissle, “upc keys,” 2016, https://haxx.in/upc_keys.c.

J. Gilmore, “Re: [Cryptography] Opening Discussion: Specula-
tion on "BULLRUN”,” https://www.mail-archive.com/cryptography @
metzdowd.com/msg12325.html, 2013.

GNU Project, “glibc: System Databases and Name Service
Switch,” 1992-2020, https://www.gnu.org/software/libc/manual/html_
node/Name-Service-Switch.html.

T. Goodspeed, S. Bratus, R. Melgares, R. Shapiro, and R. Speers,
“Packets in Packets: Orson Welles’ In-Band Signaling Attacks for
Modern Radios,” in 5th USENIX Workshop on Offensive Technolo-
gies, WOOT’11, August 8, 2011, San Francisco, CA, USA, Proceed-
ings, D. Brumley and M. Zalewski, Eds. = USENIX Association,
2011, pp. 54-61, http://static.usenix.org/event/wootl 1/tech/final _files/
Goodspeed.pdf.

https://rfc-editor.org/rfc/rfc7268.txt
https://eprint.iacr.org/2020/1109
https://github.com/JJChiDguez/sibc/
https://daserste.ndr.de/panorama/aktuell/nsa230_page-1.html
https://daserste.ndr.de/panorama/aktuell/nsa230_page-1.html
https://daserste.ndr.de/panorama/xkeyscorerules100.txt
https://daserste.ndr.de/panorama/xkeyscorerules100.txt
https://www.spiegel.de/international/germany/inside-the-nsa-s-war-on-internet-security-a-1010361.html
https://www.spiegel.de/international/germany/inside-the-nsa-s-war-on-internet-security-a-1010361.html
https://doi.org/10.1007/978-3-030-23696-0_1
https://tinyurl.com/4ewxxejj
https://doi.org/10.1007/978-3-642-23951-9_9
https://doi.org/10.1007/978-3-642-23951-9_9
https://doi.org/10.1145/3319535.3363229
https://doi.org/10.1007/978-3-662-49301-4_17
https://doi.org/10.1007/978-3-662-49301-4_17
https://rfc-editor.org/rfc/rfc8548.txt
https://www.theregister.com/2017/02/22/linx_members_vote_to_block/
https://www.theregister.com/2017/02/22/linx_members_vote_to_block/
https://yx7.cc/code/csidh/csidh-latest.tar.xz
https://yx7.cc/code/csidh/csidh-latest.tar.xz
https://doi.org/10.1007/978-3-030-30530-7_9
https://rfc-editor.org/rfc/rfc3927.txt
https://rfc-editor.org/rfc/rfc3927.txt
https://rfc-editor.org/rfc/rfc6763.txt
https://rfc-editor.org/rfc/rfc6762.txt
https://rfc-editor.org/rfc/rfc6762.txt
https://dl.acm.org/doi/10.1145/3407023.3409220
https://rfc-editor.org/rfc/rfc8553.txt
https://rfc-editor.org/rfc/rfc8553.txt
https://doi.org/10.1109/SP.1983.10021
https://doi.org/10.1109/SP.1983.10021
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/wireguard-next-generation-kernel-network-tunnel/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/wireguard-next-generation-kernel-network-tunnel/
https://rfc-editor.org/rfc/rfc2131.txt
https://flent.org/
https://github.com/juanfont/headscale
https://rfc-editor.org/rfc/rfc6071.txt
https://rfc-editor.org/rfc/rfc6071.txt
https://theintercept.com/2016/09/06/nsa-menwith-hill-targeted-killing-surveillance/
https://theintercept.com/2016/09/06/nsa-menwith-hill-targeted-killing-surveillance/
https://haxx.in/upc_keys.c
https://www.mail-archive.com/cryptography@metzdowd.com/msg12325.html
https://www.mail-archive.com/cryptography@metzdowd.com/msg12325.html
https://www.gnu.org/software/libc/manual/html_node/Name-Service-Switch.html
https://www.gnu.org/software/libc/manual/html_node/Name-Service-Switch.html
http://static.usenix.org/event/woot11/tech/final_files/Goodspeed.pdf
http://static.usenix.org/event/woot11/tech/final_files/Goodspeed.pdf

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]
[61]

[62]

C. Grothoff, M. Wachs, M. Ermert, and J. Appelbaum, “Toward secure
name resolution on the internet,” Computers & Security, vol. 77, pp.
694-708, 2018.

C. Grothoff, M. Wachs, M. Ermert, J. Appelbaum, D. Larousserie,
Y. Eudes, and L. Poitras, “MoreCowBells: Nouvelles révélations sur
les pratiques de la NSA,” Le Monde, no. 24.1.2015, January 2015.

D. Herrmann, R. Wendolsky, and H. Federrath, “Website finger-
printing: attacking popular privacy enhancing technologies with the
multinomial naive-bayes classifier,” in Proceedings of the 2009 ACM
workshop on Cloud computing security (CCSW ’09). New York, NY,
USA: ACM, October 2009, pp. 31-42, http://epub.uni-regensburg.de/
11919/1/authorsversion-ccsw09.pdf.

T. Hgiland-Jgrgensen, C. A. Grazia, P. Hurtig, and A. Brunstrom,
“Flent: The flexible network tester,” in Proceedings of the 11th EAI
International Conference on Performance Evaluation Methodologies
and Tools, 2017, pp. 120-125.

A. Hiilsing, K. Ning, P. Schwabe, F. Weber, and P. R. Zimmermann,
“Post-quantum WireGuard source code,” 2020, https://cryptojedi.org/
crypto/data/pgwireguard-20200402.tar.bz2.

——, “Post-Quantum WireGuard,” in 2021 IEEE Symposium on Se-
curity and Privacy (S&P). Los Alamitos, CA, USA: IEEE Computer
Society, May 2021, pp. 511-528, https://doi.ieeecomputersociety.org/
10.1109/SP40001.2021.00030.

IEEE, “IEEE Standard for Local and Metropolitan Area Networks:
Media Access Control (MAC) Security,” IEEE Std 802.1AE-2006, pp.
1-150, 2006.

IEEE, “IEEE Standard for Information technology - Telecommu-
nications and information exchange between systems - Local and
metropolitan area networks - Specific requirements. Part 11: Wireless
LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications Amendment 4: Protected Management Frames,” /EEE
Std 802.11w-2009 (Amendment to IEEE Std 802.11-2007 as amended
by IEEE Std 802.11k-2008, IEEE Std 802.11r-2008, and IEEE Std
802.11y-2008), pp. 1-111, 2009.

ISO Central Secretary, “Information technology - Automatic identifi-
cation and data capture techniques - QR Code bar code symbology
specification,” International Organization for Standardization, Geneva,
CH, Standard ISO/IEC TR 18004:2015, 2016, https://www.iso.org/
standard/62021.html.

A. Jalali, R. Azarderakhsh, M. M. Kermani, and D. Jao, “Towards
optimized and constant-time CSIDH on embedded devices,” in Inter-
national Workshop on Constructive Side-Channel Analysis and Secure
Design. Springer, 2019, pp. 215-231.

N. Kobeissi, “Verifpal: Cryptographic Protocol Analysis for Students
and Engineers,” JACR Cryptol. ePrint Arch., vol. 2019, p. 971, 2019,
https://eprint.iacr.org/2019/971.

N. Kobeissi, G. Nicolas, and M. Tiwari, “Verifpal: Cryptographic
Protocol Analysis for the Real World,” in Progress in Cryptology
- INDOCRYPT 2020 - 21st International Conference on Cryptology
in India, Bangalore, India, December 13-16, 2020, Proceedings, ser.
Lecture Notes in Computer Science, K. Bhargavan, E. Oswald, and
M. Prabhakaran, Eds., vol. 12578. Springer, 2020, pp. 151-202,
https://doi.org/10.1007/978-3-030-65277-7_8.

P. Kotler, “The prosumer movement,” in Prosumer Revisited. Springer,
2010, pp. 51-60.

H. Krawczyk and P. Eronen, “HMAC-based Extract-and-Expand Key
Derivation Function (HKDF),” IBM Research, IETF Internet Draft —
RFC5869, May 2010, https://tools.ietf.org/html/rfc5869.

K. Landefeld, “G10, BND-Gesetz und der effektive Schutz
vor Grundrechten,” 2018, https://fahrplan.events.ccc.de/congress/2018/
Fahrplan/events/10016.html.

A. Langley, “Opportunistic encryption everywhere,” In W2SP, 2009,
https://www.ieee-security.org/TC/W2SP/2009/papers/s 1 p2.pdf.

Linux man-pages project, capabilities(7) - Linux manual page, 7 2020.
E. N. Lorente, C. Meijer, and R. Verdult, “Scrutinizing WPA2
password generating algorithms in wireless routers,” in 9th USENIX
Workshop on Offensive Technologies (WOOT-15), 2015.

A. T. Markettos, C. Rothwell, B. F. Gutstein, A. Pearce, P. G. Neu-
mann, S. W. Moore, and R. N. M. Watson, “Thunderclap: Exploring
Vulnerabilities in Operating System IOMMU Protection via DMA

15

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

(72]

(73]

[74]

[75]

[76]

(771

(78]

[79]

[80]

[81]

(82]

from Untrustworthy Peripherals,” in Proceedings of the Network and
Distributed Systems Security Symposium (NDSS), 2 2019.

M. Marlinspike, “Cloud crack,” 2012, https://web.archive.org/web/
20160319232206/https://www.cloudcracker.com/.

A. Meister, “How the German Foreign Intelligence Agency BND
tapped the Internet Exchange Point DE-CIX in Frankfurt, since 2009,”
2015, https://shorturl.at/gmrMU.

A. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography. CRC Press, 1996, http://cacr.uwaterloo.ca/
hac/.

M. S. Miller, “Robust Composition: Towards a Unified Approach to
Access Control and Concurrency Control,” Ph.D. dissertation, Johns
Hopkins University, Baltimore, Maryland, USA, May 2006.

P. Mockapetris, “Domain names - implementation and specification,”
RFC 1035, Nov. 1987, https://rfc-editor.org/rfc/rfc1035.txt.

R. Moskowitz, D. Karrenberg, Y. Rekhter, E. Lear, and G. J. de Groot,
“Address Allocation for Private Internets,” RFC 1918, Feb. 1996, https:
/lrfc-editor.org/rfc/rfc1918.txt.

S. J. Murdoch and G. Danezis, “Low-cost traffic analysis of Tor,” in
2005 IEEE Symposium on Security and Privacy (S&P’05). IEEE,
2005, pp. 183-195.

NIST, “Post-Quantum Round 3 Submissions,” https://csrc.nist.gov/
Projects/post-quantum-cryptography/round-3-submissions, 2021.

G. Nomikos and X. A. Dimitropoulos, “traixroute: Detecting ixps
in traceroute paths,” in Passive and Active Measurement - 17th
International Conference, PAM 2016, Heraklion, Greece, March 31
- April 1, 2016. Proceedings, ser. Lecture Notes in Computer Science,
T. Karagiannis and X. A. Dimitropoulos, Eds., vol. 9631. Springer,
2016, pp. 346-358, https://doi.org/10.1007/978-3-319-30505-9_26.

E. C. of Human Rights, “Big Brother Watch and others v. the
United Kingdom,” Sep 2018, applications nos. 58170/13, 62322/14
and 24960/15 and http://hudoc.echr.coe.int/eng?i=001-186048.

T. Perrin, “The Noise Protocol Framework,” 2018, http://www.
noiseprotocol.org/noise.html.

D. C. Plummer, “An Ethernet Address Resolution Protocol: Or Con-
verting Network Protocol Addresses to 48.bit Ethernet Address for
Transmission on Ethernet Hardware,” RFC 826, Nov. 1982, https:
/lrfc-editor.org/rfc/rfc826.txt.

L. Poitras, M. Rosenbach, and H. Stark, “How GCHQ Monitors
Germany, Israel and the EU,” https://tinyurl.com/2krrdswx, 12 2013.

V. Ramachandran and S. Nandi, “Detecting ARP spoofing: An ac-
tive technique,” in Information Systems Security, First International
Conference, ICISS 2005, Kolkata, India, December 19-21, 2005,
Proceedings, ser. Lecture Notes in Computer Science, S. Jajodia
and C. Mazumdar, Eds., vol. 3803. Springer, 2005, pp. 239-250,
https://doi.org/10.1007/11593980_18.

M. Ray, J. Appelbaum, K. Koscher, and I. Finder, “vpwns:
Virtual Pwned Networks,” in 2nd USENIX Workshop on Free
and Open Communications on the Internet, FOCI 12, Belle-
vue, WA, USA, August 6, 2012, R. Dingledine and J. Wright,
Eds. USENIX Association, 2012, https://www.usenix.org/conference/
focil2/workshop-program/presentation/appelbaum.

B. I. Reddy and V. Srikanth, “Review on wireless security protocols
(WEP, WPA, WPA2 & WPA3),” International Journal of Scientific
Research in Computer Science, Engineering and Information Technol-
ogy, 2019.

D. J. Rice, “DOCSIS 3.1® technology and hybrid fiber coax for multi-
Gbps broadband,” in 2015 Optical Fiber Communications Conference
and Exhibition (OFC). 1EEE, 2015, pp. 1-4.

G. Ritzer and N. Jurgenson, “Production, consumption, prosumption:
The nature of capitalism in the age of the digital ‘prosumer’,” Journal
of consumer culture, vol. 10, no. 1, pp. 13-36, 2010.

S. Rose, M. Larson, D. Massey, R. Austein, and R. Arends, “DNS
Security Introduction and Requirements,” RFC 4033, Mar. 2005, https:
//rfc-editor.org/rfc/rfc4033.txt.

B. Ruytenberg, “Breaking Thunderbolt Protocol Security:
Vulnerability Report,” 2020, https://thunderspy.io/assets/docs/
breaking-thunderbolt-security-bjorn-ruytenberg-20200417.pdf.

http://epub.uni-regensburg.de/11919/1/authorsversion-ccsw09.pdf
http://epub.uni-regensburg.de/11919/1/authorsversion-ccsw09.pdf
https://cryptojedi.org/crypto/data/pqwireguard-20200402.tar.bz2
https://cryptojedi.org/crypto/data/pqwireguard-20200402.tar.bz2
https://doi.ieeecomputersociety.org/10.1109/SP40001.2021.00030
https://doi.ieeecomputersociety.org/10.1109/SP40001.2021.00030
https://www.iso.org/standard/62021.html
https://www.iso.org/standard/62021.html
https://eprint.iacr.org/2019/971
https://doi.org/10.1007/978-3-030-65277-7_8
https://tools.ietf.org/html/rfc5869
https://fahrplan.events.ccc.de/congress/2018/Fahrplan/events/10016.html
https://fahrplan.events.ccc.de/congress/2018/Fahrplan/events/10016.html
https://www.ieee-security.org/TC/W2SP/2009/papers/s1p2.pdf
https://web.archive.org/web/20160319232206/https://www.cloudcracker.com/
https://web.archive.org/web/20160319232206/https://www.cloudcracker.com/
https://shorturl.at/gmrMU
http://cacr.uwaterloo.ca/hac/
http://cacr.uwaterloo.ca/hac/
https://rfc-editor.org/rfc/rfc1035.txt
https://rfc-editor.org/rfc/rfc1918.txt
https://rfc-editor.org/rfc/rfc1918.txt
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/978-3-319-30505-9_26
http://hudoc.echr.coe.int/eng?i=001-186048
http://www.noiseprotocol.org/noise.html
http://www.noiseprotocol.org/noise.html
https://rfc-editor.org/rfc/rfc826.txt
https://rfc-editor.org/rfc/rfc826.txt
https://tinyurl.com/2krrdswx
https://doi.org/10.1007/11593980_18
https://www.usenix.org/conference/foci12/workshop-program/presentation/appelbaum
https://www.usenix.org/conference/foci12/workshop-program/presentation/appelbaum
https://rfc-editor.org/rfc/rfc4033.txt
https://rfc-editor.org/rfc/rfc4033.txt
https://thunderspy.io/assets/docs/breaking-thunderbolt-security-bjorn-ruytenberg-20200417.pdf
https://thunderspy.io/assets/docs/breaking-thunderbolt-security-bjorn-ruytenberg-20200417.pdf

[83]

[84]

[85]

[86]
[87]

[88]

[89]
[90]

[91]

[92]

[93]

[94]

[95]

[96]

[971

[98]

[99]

[100]

L. Ryge, “add wifi geolocation from space to the list of things that
once sounded crazy but actually happens /ty,” 2016, https:/nitter.net/
wiretapped/status/773136872323317760#m.

C. Savage, 12 2020, https://www.nytimes.com/2020/12/03/us/politics/
section-215-patriot-act.html.

J. M. Schanck, W. Whyte, and Z. Zhang, “Circuit-extension hand-
shakes for tor achieving forward secrecy in a quantum world,” Proc.
Priv. Enhancing Technol., vol. 2016, no. 4, pp. 219-236, 2016,
https://doi.org/10.1515/popets-2016-0037.

Slack Inc, “Nebula,” https://github.com/slackhq/nebula, 11 2019.

M. Stiegler, “An introduction to petname systems,” Advances in Fi-
nancial Cryptography, 2005, https://www.financialcryptography.com/
mt/archives/000499.html.

C. Stocker, “GCHQ Surveillance: The Power of Britain’s Data Vac-
uum,” https://tinyurl.com/4azdtve8, 7 2013.

Tailscale, “Tailscale,” https://tailscale.com/, 2020.

The Guardian, “How US and UK spy agencies defeat internet
privacy and security,” http://www.theguardian.com/world/2013/sep/05/
nsa-gchg-encryption-codes-security, 2013.

Tonari Inc, “innernet,” https://github.com/tonarino/innernet, 2021.

M.-T. Tran, T.-T. Nguyen, and I. Echizen, ‘“Pool-Based APROB
Channel to Provide Resistance against Global Active Adversary under
Probabilistic Real-Time Condition,” in 2008 IEEE/IFIP International
Conference on Embedded and Ubiquitous Computing, vol. 2, 2008,
pp. 257-263.

M. Vanhoef and E. Ronen, “Dragonblood: Analyzing the Dragonfly
Handshake of WPA3 and EAP-pwd,” in 2020 IEEE Symposium on
Security and Privacy (SP). 1EEE, 2020, pp. 517-533.

S. Viehbock, “Brute forcing Wi-Fi Protected Setup,” 2011, https:/
sviehb.files.wordpress.com/2011/12/viehboeck_wps.pdf.

J. Vollbrecht, J. D. Carlson, L. Blunk, D. B. D. Aboba, and H. Lev-
kowetz, “Extensible Authentication Protocol (EAP),” RFC 3748, Jun.
2004, https://rfc-editor.org/rfc/rfc3748.txt.

Vula Authors, “Vula: automatic local area network encryption,” https:
//vula.link, 2021.

B. Wagner and P. Mindus, “Multistakeholder Governance and
Nodal Authority—Understanding Internet Exchange Points,”
NoC Internet Governance Research Project: Case Studies, Case
Study 7, 2015, https://publixphere.net/i/noc/page/IG_Case_Study_
Multistakeholder_Governance_and_Nodal_Authority_Understanding_
Internet_Exchange_Points.html.

D. Wendlandt, D. G. Andersen, and A. Perrig, “Perspectives: im-
proving ssh-style host authentication with multi-path probing,” in 2008
USENIX Annual Technical Conference, Boston, MA, USA, June 22-27,
2008. Proceedings, R. Isaacs and Y. Zhou, Eds. USENIX Association,
2008, pp. 321-334, http://www.usenix.org/events/usenix08/tech/full_
papers/wendlandt/wendlandt.pdf.

K. Wierenga, S. Winter, and T. Wolniewicz, “The eduroam Architec-
ture for Network Roaming,” RFC 7593, Sep. 2015, https://rfc-editor.
org/rfc/rfc7593.txt.

P. Wouters, “History and implementation status of Opportunistic
Encryption for IPsec,” https://tinyurl.com/s3dp7z98, 2013.

16

https://nitter.net/wiretapped/status/773136872323317760#m
https://nitter.net/wiretapped/status/773136872323317760#m
https://www.nytimes.com/2020/12/03/us/politics/section-215-patriot-act.html
https://www.nytimes.com/2020/12/03/us/politics/section-215-patriot-act.html
https://doi.org/10.1515/popets-2016-0037
https://github.com/slackhq/nebula
https://www.financialcryptography.com/mt/archives/000499.html
https://www.financialcryptography.com/mt/archives/000499.html
https://tinyurl.com/4azdtvc8
https://tailscale.com/
http://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security
http://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security
https://github.com/tonarino/innernet
https://sviehb.files.wordpress.com/2011/12/viehboeck_wps.pdf
https://sviehb.files.wordpress.com/2011/12/viehboeck_wps.pdf
https://rfc-editor.org/rfc/rfc3748.txt
https://vula.link
https://vula.link
https://publixphere.net/i/noc/page/IG_Case_Study_Multistakeholder_Governance_and_Nodal_Authority_Understanding_Internet_Exchange_Points.html
https://publixphere.net/i/noc/page/IG_Case_Study_Multistakeholder_Governance_and_Nodal_Authority_Understanding_Internet_Exchange_Points.html
https://publixphere.net/i/noc/page/IG_Case_Study_Multistakeholder_Governance_and_Nodal_Authority_Understanding_Internet_Exchange_Points.html
http://www.usenix.org/events/usenix08/tech/full_papers/wendlandt/wendlandt.pdf
http://www.usenix.org/events/usenix08/tech/full_papers/wendlandt/wendlandt.pdf
https://rfc-editor.org/rfc/rfc7593.txt
https://rfc-editor.org/rfc/rfc7593.txt
https://tinyurl.com/s3dp7z98

APPENDIX
A. Verifpal verification

The following listing models the Vula protocol and shows
our security queries. For an executable version see our anony-
mous page [96].

attacker[active]

principal Laural
knows public _hkdf_salt
knows public _hkdf_info
generates time_stamp_a_0
knows private vk_a
vk_a_pk = G vk_a
generates csidh_a
csidh_a_pk = G csidh_a
descriptor_a_pt0 = CONCAT (

time_stamp_a_0, csidh_a_pk)

ha_0 = HASH (descriptor_a_pt0)
sig_a_0 = SIGN(vk_a, ha_0)

]

principal Glenn]
knows public _hkdf_salt
knows public _hkdf_info
generates time_stamp_b_0
knows private vk_Db
vk_b_pk = G vk_b
generates csidh_b
csidh_b_pk = G csidh_b
descriptor_b_pt0 = CONCAT (

time_stamp_b_0, csidh_b_pk)

hb_0 = HASH (descriptor_b_ptO0)
sig_b_0 = SIGN(vk_b, hb_0)

1

Laura -> Glenn:
csidh_a_pk,

[vk_a_pk],
sig_a_o0

time_stamp_a_Q0,

Glenn -> Laura:
csidh_b_pk,

[vk_b_pk],
sig_b_0

time_stamp_b_0,

principal Laural
x_0 = SIGNVERIF (vk_b_pk, HASH(CONCAT
(time_stamp_b_0, csidh_b_pk)),
sig_b_0)°7
ss_a = HKDF (_hkdf_salt,
csidh_b_pk~csidh_a),

HASH (
_hkdf_info)
]

principal Glenn|
y_0 = SIGNVERIF (vk_a_pk, HASH(CONCAT
(time_stamp_a_0, csidh_a_pk)),
sig_a_0)°7
ss_b = HKDF (_hkdf_salt,
csidh_a_pk~csidh_b),

HASH (
_hkdf_info)
]

queries|
freshness? sig_a_0
freshness? sig_b_0

freshness? time_stamp_a_0

freshness? time_stamp_b_0

authentication? Glenn -> Laura:
sig_b_0

authentication? Laura -> Glenn:
sig_a_0

confidentiality? ss_a

confidentiality? ss_b

Listing 1: ”Verifpal Vula model protocol”

B. Additional FLENT performance graphs

The following graphs show some of the performance
characteristics with different CPU architectures, and microar-
chitectures. The solid green and solid orange lines represent the
upload and download performance for IP traffic processed by
WireGuard. The dotted green and dotted orange lines represent
the upload and download performance for IP traffic without
any protection from WireGuard on the same system. The
latency of IP traffic is represented by the solid purple line for
WireGuard and the dotted purple line is without any protection
from WireGuard.

vvvvvvvv

|

| | |
" I it
11‘ |

bl ‘ il | \ |
A
i th i J\ /’W i il ‘,’ W 3

Figure 4: FLENT 12 stream down with ping; graph with and
without WireGuard. AMD64 and AARCH64.

In Figure 4 we see the performance of a twelve stream
iperf3 test with and without WireGuard between an AMD64
machine and an AARCH64 (ARM64) machine. The perfor-
mance for gigabit traffic is as expected and fills roughly all
available bandwidth modulo measurement noise.

In Figure 5 we see the performance of a twelve stream
iperf3 test with and without WireGuard between an AMD64
machine and an RISC-V machine. The RISC-V machine has
performance issues. It is not even able to sustain a full gigabit
of traffic without WireGuard. Adding WireGuard shows a
steady 200Mb/s which indicates that the RISC-V platform
would greatly benefit from an optimized WireGuard imple-
mentation. That WireGuad works everywhere that Linux works
helps with deployment and performance improvements may be
made as needed for each CPU architecture.

In Figure 6 we see the performance of a twelve stream
iperf3 test with and without WireGuard between an AMDG64
(Intel i7) machine and an AMD64 (zen) machine. The per-
formance difference between these two microarchitectures is

Figure 5: FLENT 12 stream down with ping; graph with and
without WireGuard. AMDG64 and RISC-V.

nominal, and while improvements may be useful for speeds
in excess of one gigabit, they are suitable for full gigabit
saturation. The AMDG64 architecture is extremely common and
many home users likely have only AMD64 machines as their
laptop or desktop endpoints.

1000

20 w0 0 0 100 120
Time (5)

Figure 6: FLENT 12 stream down with ping; graph with and
without WireGuard. AMD64 (i7) and AMDG64 (zen).

In Figure 7 we see the performance of a twelve stream
iperf3 test with and without WireGuard between a POWER9
machine and an AMD64 machine. The performance for gigabit
traffic is as expected and fills roughly all available bandwidth
modulo measurement noise.

. - b 3

neo | ’]

1050 i ‘
00 '
»

W \
v "

il
!‘r

m‘»

#
i /“ "n J W«‘ \r“!”\ \

Time (5)

Figure 7: FLENT 12 stream down with ping; graph with and
without WireGuard. POWER9 and AMD64.

18

The performance characteristics clearly show the benefits
of architecture specific optimization. WireGuard is able to
saturate gigabit Ethernet connections bidirectionally when two
peers use modern AMD64 CPUs. WireGuard performance
on more esoteric or otherwise new CPU architectures leaves
something to be desired by comparison to optimized versions
of itself on other platforms.

C. systemd integration details

Vula is integrated into the system as multiple daemons
managed by systemd.

1) vula.slice: The vula.slice limits memory and other
resources to ensure that none of the daemons run with systemd
are able to consume excessive resources. All Vula daemons are
a part of the vula.slice.

2) Discovery daemon: vula—-discover.service runs
the vula discover daemon which monitors for Vula publi-
cations on the local network. It runs as user vula-discover
and as group vula. It requires access to the local network
segment.

vula discover listens for mDNS service
announcements under the DNS-SD label of
_opabinia._udp.local. and it outputs each discovered

mDNS WireGuard service. The output is a peer descriptor
contained in a single line for each discovered WireGuard
service. The peer descriptor contains all the information
needed to reach and configure the newly discovered
WireGuard peer. For each Vula service detected, it constructs
a descriptor which is then sent to the vula organize
daemon.

3) Publish daemon: vula-publish.service runs the
vula publish daemon and publishes the mDNS Service
record on the local network. It runs as user vula-publish
and as group vula.

vula publish is a standalone mDNS service announcer
which does not conflict with other mDNS programs commonly
found on GNU/Linux systems such as avahi-daemon. It re-
ceives instructions from the vula organize daemon via
d-bus, or via a python function call in monolithic mode, and
publishes service records containing specifically formatted data
signed under a Vula specific Ed25519 private key.

4) Configuration daemon: vula-organize.service
runs the vula organize daemon which reads peer de-
scriptors from a systemd managed socket. It runs as user
vula-organize and as group vula. It does not access the
network and its primary purpose is to configure the local vula
device WireGuard interface. It retains the capability [60]
CAP_NET_ADMIN to ensure it has the relevant authority and
permission to modify the interface.

5) Additional implementation details: vula organize
will generate cryptographic keys and write out data to the
following files:

0) /var/lib/vula-organize/keys.yaml CSIDH
secret key, Curve25519 private key, and the Ed25519
private key for the vula organize daemon.

1) /var/lib/vula-organize/vula-organize.yaml
Configuration file containing relevant Vula state for the
vula organize daemon.

2) /etc/systemd/system/vula-organize.service
A systemd daemon configuration file.

3) /etc/systemd/system/vula-publish.service
A systemd daemon configuration file.

4) /etc/systemd/system/vula-discover.service
A systemd daemon configuration file.

5) /etc/systemd/system/vula.slice A systemd
slice to contain and constrain the aforementioned systemd
services.

vula configure will add a firewall rule using
ufw to allow traffic to the vula interface (ufw allow
5354 /udp):

To Action From
5354 /udp ALLOW IN Anywhere
5354/udp (v6) ALLOW IN Anywhere

19

D. Adversary realities

Often when writing about adversaries it is difficult to
point to specific tools that may motivate specific design goals.
Thanks to some very special whistleblowers, we have evidence
from inside one of the largest, and well funded state level
adversaries on the planet. We know that cryptography is a
hard barrier [7] for surveillance by such adversaries. It is
reasonable to expect that other large state adversaries have
similar limitations, similar tools, or even access to the same
tools based on geopolitical agreements. We have included two
relevant internal documents from the NSA for posterity.

1) NIGHTSTAND: NIGHTSTAND as seen in Figure 8 is
a so-called close access operation tool for attacking wireless
devices.

TOP SECRET//COMINT//REL TO USA, FVEY

NIGHTSTAND

Wireless Exploitation / Injection Tool

(TS/ISIREL) An active 802.11 wireless exploitation and injection tool for s
payload/exploit delivery into otherwise denied target space. NIGHTSTAND is
typically used in operations where wired access to the target is not possible.

07/25108

(TS//SI//REL) NIGHTSTAND - Close Access Operations ¢
Battlefield Tested = Windows Exploitation « Standalone System

System Details

¥ (U//[FOUOQ) Standalone tool currently
running on an x86 laptop loaded with
Linux Fedora Core 3.

> (TS/ISI/REL) Exploitable Targets
include Win2k, WinXP, WinXPSP1,
WINXPSP2 running internet Explorer
versions 5.0-6.0.

» (TS/ISI/IREL) NS packet injection can
target one client or multiple targets on a
wireless network.

¥ (TS/ISI/REL) Attack is undetectable by
the user.

NIGHTSTAND Hardware
(TS/ISIIIREL) Use of external amplifiers and antennas in both
experimental and operational scenarios have resulted in successful
NIGHTSTAND attacks from as far away as eight miles under ideal
environmental conditions.

Unit Cost: Varies from platform to platform

Status: Product has been deployed in the field. Upgrades to the system continue to
be developed.

PoC: I, 32242, .

Derived From: NSAICSSM 1-52
Dated: 20070108
Declassify On: 20320108

TOP SECRET//COMINT/REL TO USA, FVEY

Figure 8: NSA internal product advertisement

20

2) SPARROW 1I: SPARROW II as seen in Figure 9 is
a so-called Airborne Operations tool for monitoring wireless
networks.

TOP SECRET//COMINT/REL TO USA, FVEY

SPARROW II

Wireless Survey - Airborne Operations - UAV

(TS//SIREL) An embedded computer system running BLINDDATE
tools. Sparrow Il is a fully functional WLAN collection system with
integrated Mini PCI slots for added functionality such as GPS and 07/25/08

multiple Wireless Network Interface Cards. |
I

(UIFOUO) System Specs

Processor: IBM Power PC 405GPR
Memory: 64MB (SDRAM)
16MB (FLASH)

Expansion: Mini PCI (Up to 4
devices) supports USB, Compact
Flash, and 802.11 B/G "

OS: Linux (2.4 Kernel)
Application SW: BLINDDATE

SPARROW Il Hardware

Battery Time: At least two hours

(TS//SIIREL) The Sparrow Il is a capable option for deployment where
small size, minimal weight and reduced power consumption are required.
PClI devices can be connected to the Sparrow Il to provide additional
functionality, such as wireless command and control or a second or third
802.11 card. The Sparrow Il is shipped with Linux and runs the
BLINDDATE software suite.

Unit Cost: $6K

Status: (S//SI/REL) Operational Restrictions exist for equipment deployment.

POC: . 532242, [

Derived From: NSA/CSSM 1.52
Dated: 20070108
Declassify On: 20320108

TOP SECRET//COMINT/REL TO USA, FVEY

Figure 9: NSA internal product advertisement

	Introduction
	Motivation
	The Vula Proposal

	Prior and related work
	Related protocols: 802.1x and MACsec
	Comparison with other projects
	Star network WireGuard deployments
	Point-to-point VPN deployments
	Management
	Addressing

	Threat Model and design considerations
	Unilateral Surveillance Adversary
	End User
	Network Operator
	Vula peer states
	Cryptographic choices
	Automatic protection against passive adversaries
	Automatic protection against active adversaries
	Security-convenience trade-off
	pin_new_peers = true
	pin_new_peers = false

	Summary of protections

	Detailed Protocol Description
	WireGuard
	mDNS/DNS-SD: decentralized Vula peer discovery
	Vula Protocol logic
	Protocol steps
	Implementation
	Multi-daemon systemd integration or monolithic mode
	Vula peer tunnel considerations
	IP packet marking

	Memorable and Secure: Pet-Names
	Post-Quantum considerations by the CSIDH

	Performance
	CSIDH performance evaluation
	Network performance evaluation

	Security Evaluation
	Vula Security Goals
	Data and Metadata
	Formal verification
	Active attacks against Vula
	Address Resolution Protocol
	Dynamic Host Configuration Protocol
	MAC address vs IP address vs hostname security
	Traffic analysis
	Selective blocking
	Continuity of Verification Keys
	Key substitution
	Further protection against active adversaries

	Adversary evaluation
	Unilateral Surveillance
	 End User
	 Network Operator

	Conclusions
	References
	Appendix
	Verifpal verification
	Additional FLENT performance graphs
	systemd integration details
	vula.slice
	Discovery daemon
	Publish daemon
	Configuration daemon
	Additional implementation details

	Adversary realities
	NIGHTSTAND
	SPARROW II

